Bayes estimates under bounded loss

Biometrika ◽  
1980 ◽  
Vol 67 (3) ◽  
pp. 629-638 ◽  
Author(s):  
J. Q. SMITH
Keyword(s):  
2020 ◽  
Vol 9 (1) ◽  
pp. 47-60
Author(s):  
Samir K. Ashour ◽  
Ahmed A. El-Sheikh ◽  
Ahmed Elshahhat

In this paper, the Bayesian and non-Bayesian estimation of a two-parameter Weibull lifetime model in presence of progressive first-failure censored data with binomial random removals are considered. Based on the s-normal approximation to the asymptotic distribution of maximum likelihood estimators, two-sided approximate confidence intervals for the unknown parameters are constructed. Using gamma conjugate priors, several Bayes estimates and associated credible intervals are obtained relative to the squared error loss function. Proposed estimators cannot be expressed in closed forms and can be evaluated numerically by some suitable iterative procedure. A Bayesian approach is developed using Markov chain Monte Carlo techniques to generate samples from the posterior distributions and in turn computing the Bayes estimates and associated credible intervals. To analyze the performance of the proposed estimators, a Monte Carlo simulation study is conducted. Finally, a real data set is discussed for illustration purposes.


2009 ◽  
Vol 29 (4) ◽  
pp. 35-46 ◽  
Author(s):  
John Quigley ◽  
Tim Bedford ◽  
Lesley Walls

Author(s):  
F. Shahsanaei ◽  
A. Daneshkhah

This paper provides Bayesian and classical inference of Stress–Strength reliability parameter, [Formula: see text], where both [Formula: see text] and [Formula: see text] are independently distributed as 3-parameter generalized linear failure rate (GLFR) random variables with different parameters. Due to importance of stress–strength models in various fields of engineering, we here address the maximum likelihood estimator (MLE) of [Formula: see text] and the corresponding interval estimate using some efficient numerical methods. The Bayes estimates of [Formula: see text] are derived, considering squared error loss functions. Because the Bayes estimates could not be expressed in closed forms, we employ a Markov Chain Monte Carlo procedure to calculate approximate Bayes estimates. To evaluate the performances of different estimators, extensive simulations are implemented and also real datasets are analyzed.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 794 ◽  
Author(s):  
Jessie Marie Byrnes ◽  
Yu-Jau Lin ◽  
Tzong-Ru Tsai ◽  
Yuhlong Lio

Let X and Y follow two independent Burr type XII distributions and δ = P ( X < Y ) . If X is the stress that is applied to a certain component and Y is the strength to sustain the stress, then δ is called the stress–strength parameter. In this study, The Bayes estimator of δ is investigated based on a progressively first failure-censored sample. Because of computation complexity and no closed form for the estimator as well as posterior distributions, the Markov Chain Monte Carlo procedure using the Metropolis–Hastings algorithm via Gibbs sampling is built to collect a random sample of δ via the joint distribution of the progressively first failure-censored sample and random parameters and the empirical distribution of this collected sample is used to estimate the posterior distribution of δ . Then, the Bayes estimates of δ using the square error, absolute error, and linear exponential error loss functions are obtained and the credible interval of δ is constructed using the empirical distribution. An intensive simulation study is conducted to investigate the performance of these three types of Bayes estimates and the coverage probabilities and average lengths of the credible interval of δ . Moreover, the performance of the Bayes estimates is compared with the maximum likelihood estimates. The Internet of Things and a numerical example about the miles-to-failure of vehicle components for reliability evaluation are provided for application purposes.


Sign in / Sign up

Export Citation Format

Share Document