scholarly journals A Research Framework to Integrate Cross-Ecosystem Responses to Tropical Cyclones

BioScience ◽  
2020 ◽  
Vol 70 (6) ◽  
pp. 477-489 ◽  
Author(s):  
J Aaron Hogan ◽  
Rusty A Feagin ◽  
Gregory Starr ◽  
Michael Ross ◽  
Teng-Chiu Lin ◽  
...  

Abstract Tropical cyclones play an increasingly important role in shaping ecosystems. Understanding and generalizing their responses is challenging because of meteorological variability among storms and its interaction with ecosystems. We present a research framework designed to compare tropical cyclone effects within and across ecosystems that: a) uses a disaggregating approach that measures the responses of individual ecosystem components, b) links the response of ecosystem components at fine temporal scales to meteorology and antecedent conditions, and c) examines responses of ecosystem using a resistance–resilience perspective by quantifying the magnitude of change and recovery time. We demonstrate the utility of the framework using three examples of ecosystem response: gross primary productivity, stream biogeochemical export, and organismal abundances. Finally, we present the case for a network of sentinel sites with consistent monitoring to measure and compare ecosystem responses to cyclones across the United States, which could help improve coastal ecosystem resilience.

2009 ◽  
Vol 26 (10) ◽  
pp. 2051-2070
Author(s):  
Courtney D. Buckley ◽  
Robbie E. Hood ◽  
Frank J. LaFontaine

Abstract Inland flooding from tropical cyclones is a significant factor in storm-related deaths in the United States and other countries, with the majority of tropical cyclone fatalities recorded in the United States resulting from freshwater flooding. Information collected during National Aeronautics and Space Administration (NASA) tropical cyclone field experiments suggests that surface water and flooding can be detected and therefore monitored at a greater spatial resolution by using passive microwave airborne radiometers than by using satellite sensors. The 10.7-GHz frequency of the NASA Advanced Microwave Precipitation Radiometer (AMPR) has demonstrated high-resolution detection of anomalous surface water and flooding in numerous situations. In this study, an analysis of three cases is conducted utilizing satellite and airborne radiometer data. Data from the 1998 Third Convection and Moisture Experiment (CAMEX-3) are utilized to detect surface water during the landfalling Hurricane Georges in both the Dominican Republic and Louisiana. Another case studied was the landfalling Tropical Storm Gert in eastern Mexico during the Tropical Cloud Systems and Processes (TCSP) experiment in 2005. AMPR data are compared to topographic data and vegetation indices to evaluate the significance of the surface water signature visible in the 10.7-GHz information. The results illustrate the AMPR’s utility in monitoring surface water that current satellite-based passive microwave radiometers are unable to monitor because of their coarser resolutions. This suggests the benefit of a radiometer with observing frequencies less than 11 GHz deployed on a manned aircraft or unmanned aircraft system to provide early detection in real time of expanding surface water or flooding conditions.


2019 ◽  
Vol 58 (8) ◽  
pp. 1853-1866 ◽  
Author(s):  
Monika Feldmann ◽  
Kerry Emanuel ◽  
Laiyin Zhu ◽  
Ulrike Lohmann

AbstractTropical cyclones pose a significant flood risk to vast land regions in their path because of extreme precipitation. Thus it is imperative to quantitatively assess this risk. This study compares exceedance frequencies of tropical cyclone precipitation derived from two independent observational datasets with those estimated using a tropical cyclone rainfall algorithm applied to large sets of synthetic tropical cyclones. The modeled rainfall compares reasonably well to observed rainfall across much of the southern United States but does less well in the mid-Atlantic states. Possible causes of this disparity are discussed.


Author(s):  
Kirsten D. Orwig

Convective storms affect countries worldwide, with billions in losses and dozens of fatalities every year. They are now the key insured loss driver in the United States, even after considering the losses sustained by tropical cyclones in 2017. Since 2008, total insured losses from convective storms have exceeded $10 billion per year. Additionally, these losses continue to increase year over year. Key loss drivers include increased population, buildings, vehicles, and property values. However, other loss drivers relate to construction materials and practices, as well as building code adoption and enforcement. The increasing loss trends pose a number of challenges for the insurance industry and broader society. These challenges are discussed, and some recommendations are presented.


2016 ◽  
Author(s):  
Monica H. Stone ◽  
Sagy Cohen

Abstract. Recent tropical cyclones, like Hurricane Katrina, have been some of the worst the United States has experienced. Tropical cyclones are expected to intensify, bringing about 20 % more precipitation, in the near future in response to global climate warming. Further, global climate warming may extend the hurricane season. This study focuses on four major river basins (Neches, Pearl, Mobile, and Roanoke) in the Southeast United States that are frequently impacted by tropical cyclones. An analysis of the timing of tropical cyclones that impact these river basins found that most occur during the low discharge season, and thus rarely produce riverine flooding conditions. However, an extension of the current hurricane season of June–November, due to global climate warming, could encroach upon the high discharge seasons in these basins, increasing the susceptibility for riverine hurricane-induced flooding. This analysis shows that an extension of the hurricane season to May–December (just 2 months longer) increased the number of days that would be at risk to flooding were the average tropical cyclone to occur by 37–258 %, depending on the timing of the hurricane season in relation to the high discharge seasons on these rivers. Future research should aim to extend this analysis to all river basins in the United States that are impacted by tropical cyclones in order to provide a bigger picture of which areas are likely to experience the worst increases in flooding risk due to a probable extension of the hurricane season with expected global climate change in the near future.


2020 ◽  
Vol 36 (6) ◽  
Author(s):  
Bernhard Lee Lindner ◽  
William Holden ◽  
Aaron Neuhauser ◽  
Ryan Evsich

Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 725
Author(s):  
Robert Mendelsohn ◽  
Liang Zheng

It is well known that seawalls are effective at stopping common storm surges in urban areas. This paper examines whether seawalls should be built to withstand the storm surge from a major tropical cyclone. We estimate the extra cost of building the wall tall enough to stop such surges and the extra flood benefit of this additional height. We estimate the surge probability distribution from six tidal stations spread along the Atlantic seaboard of the United States. We then measure how valuable the vulnerable buildings behind a 100 m wall must be to justify such a tall wall at each site. Combining information about the probability distribution of storm surge, the average elevation of protected buildings, and the damage rate at each building, we find that the value of protected buildings behind this 100 m wall must be in the hundreds of millions to justify the wall. We also examine the additional flood benefit and cost of protecting a km2 of land in nearby cities at each site. The density of buildings in coastal cities in the United States are generally more than an order of magnitude too low to justify seawalls this high. Seawalls are effective, but not at stopping the surge damage from major tropical cyclones.


2013 ◽  
Vol 94 (11) ◽  
pp. 1735-1742 ◽  
Author(s):  
M. Chenoweth ◽  
C. J. Mock

Among the most unusual and unexpected hurricanes in United States history is the only hurricane to make landfall in the month of May. This recently rediscovered storm that struck northwest Florida on 28 May 1863 created a natural disaster in the area that became lost to history because it was embedded in a much larger and important manmade event—in this case, the U.S. Civil War. The authors document the arrival of this storm both historically and meteorologically and anachronistically name it “Hurricane Amanda” in honor of the Union ship driven ashore by the hurricane. The hurricane revealed deficiencies and strengths in combat readiness by both sides. Meteorologically, the storm nearly achieved major hurricane status at landfall and its absence from modern databases of tropical cyclone activity is a useful reminder to users of important gaps in our knowledge of tropical cyclones even in the best-sampled storm basins.


2014 ◽  
Vol 27 (23) ◽  
pp. 8674-8685 ◽  
Author(s):  
Michael Chenoweth

Abstract A comprehensive new compilation of North Atlantic tropical cyclone activity for the years 1851–98 is presented and compared with the second-generation North Atlantic hurricane database (HURDAT2) for the same years. This new analysis is based on the retrieval of 9072 newspaper marine shipping news reports, 1260 original logbook records, 271 Maury abstract logs, 147 U.S. marine meteorological journals, and 34 Met Office (UKMO) logbooks. Records from throughout North America and the Caribbean region were used along with other primary and secondary references holding unique land and marine data. For the first time, North Atlantic daily weather maps for 1864/65, 1873, and 1881–98 were used in historical tropical cyclone research. Results for the years 1851–98 include the omission of 62 of the 361 HURDAT2 storms, and the further reduction resulting from the merging of storms to a total of 288 unique HURDAT2 tropical cyclones. The new compilation gave a total of 497 tropical cyclones in the 48-yr record, or an average of 10.4 storms per year compared to 6.0 per year in HURDAT2 less the author’s omissions. Of this total, 209 storms are completely new. A total of 90 hurricanes made landfall in the United States during this time. Seven new U.S. landfalling hurricanes are present in the new dataset but not in HURDAT2. Eight U.S. landfalling hurricanes in HURDAT2 are now considered to have only tropical storm impact or were actually extratropical at landfall. Across the North Atlantic, the number of category-4 hurricanes based on the Saffir–Simpson hurricane wind scale, compared with HURDAT2, increased from 11 to 25, 6 of which made U.S. landfall at category-4 level.


Sign in / Sign up

Export Citation Format

Share Document