hurricane impact
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 2)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Hao Nan Ou ◽  
Sun Ho Ro ◽  
Jie Gong ◽  
Zhigang Zhu


Author(s):  
Samantha L. Waddell ◽  
Dushyantha T. Jayaweera ◽  
Mehdi Mirsaeidi ◽  
John C. Beier ◽  
Naresh Kumar

Hurricanes are devastating natural disasters which dramatically modify the physical landscape and alter the socio-physical and biochemical characteristics of the environment, thus exposing the affected communities to new environmental stressors, which persist for weeks to months after the hurricane. This paper has three aims. First, it conceptualizes potential direct and indirect health effects of hurricanes and provides an overview of factors that exacerbate the health effects of hurricanes. Second, it summarizes the literature on the health impact of hurricanes. Finally, it examines the time lag between the hurricane (landfall) and the occurrence of diseases. Two major findings emerge from this paper. Hurricanes are shown to cause and exacerbate multiple diseases, and most adverse health impacts peak within six months following hurricanes. However, chronic diseases, including cardiovascular disease and mental disorders, continue to occur for years following the hurricane impact.



Author(s):  
Mingyang Chen ◽  
Alican Karaer ◽  
Eren Erman Ozguven ◽  
Tarek Abichou ◽  
Reza Arghandeh ◽  
...  

Hurricanes affect thousands of people annually, with devastating consequences such as loss of life, vegetation and infrastructure. Vegetation losses such as downed trees and infrastructure disruptions such as toppled power lines often lead to roadway closures. These disruptions can be life threatening for the victims. Emergency officials, therefore, have been trying to find ways to alleviate such problems by identifying those locations that pose high risk in the aftermath of hurricanes. This paper proposes an integrated methodology that utilizes both Google Earth Engine (GEE) and geographical information systems (GIS). First, GEE is used to access Sentinel-2 satellite images and calculate the Normalized Difference Vegetation Index (NDVI) to investigate the vegetation change as a result of Hurricane Michael in the City of Tallahassee. Second, through the use of ArcGIS, data on wind speed, debris, roadway density and demographics are incorporated into the methodology in addition to the NDVI indices to assess the overall impact of the hurricane. As a result, city-wide hurricane impact maps are created using weighted indices created based on all these data sets. Findings indicate that the northeast side of the city was the worst affected because of the hurricane. This is a region where more seniors live, and such disruptions can lead to dramatic consequences because of the fragility of these seniors. Officials can pinpoint the identified critical locations for future improvements such as roadway geometry modification and landscaping justification.



Author(s):  
Katherine R. Arlinghaus ◽  
Stacey L. Gorniak ◽  
Daphne C. Hernandez ◽  
Craig A. Johnston

Abstract Objective: This study examined the differential impact of Hurricane Harvey on adolescent standardized Body Mass Index (zBMI), physical activity, diet, and perceived stress. Methods: Prior to Hurricane Harvey, 175 ethnic minority adolescents were recruited from an independent school district in Houston. Height and weight were directly measured. The School Physical Activity and Nutrition Questionnaire assessed diet and physical activity. Stress was assessed with the Perceived Stress Scale. High hurricane impact was classified as at least 1 affirmative response to house damage, rescue, displacement, or going without food, water, or medicine. Repeated measures such as ANCOVA models were developed to assess differences in zBMI, physical activity, diet, and stress between the hurricane impact groups. Regression models were used to assess stress as a mediator of the hurricane impact and zBMI change relationship. Results: Students who were highly impacted by the hurricane had a greater decrease in zBMI than those less impacted from pre-hurricane to 15 weeks post-hurricane (95% CI 0.02 to 0.25, p<0.05). Physical activity and diet did not differ by impact. Perceived stress at 3 weeks post-hurricane mediated the impact and zBMI change relationship (β=-0.04 95% CI -0.12 to -0.002). Conclusion: The decrease in zBMI among highly impacted students warrants further monitoring. Perceived stress, immediately following the hurricane, impacted student growth months later.



2020 ◽  
Vol 261 ◽  
pp. 113189
Author(s):  
Maya Luetke ◽  
Ashley Judge ◽  
Sina Kianersi ◽  
Reginal Jules ◽  
Molly Rosenberg


2020 ◽  
Vol 8 (8) ◽  
pp. 545
Author(s):  
Katherine Anarde ◽  
Jens Figlus ◽  
Damien Sous ◽  
Marion Tissier

Infragravity (IG) waves are expected to contribute significantly to coastal flooding and sediment transport during hurricane overwash, yet the dynamics of these low-frequency waves during hurricane impact remain poorly documented and understood. This paper utilizes hydrodynamic measurements collected during Hurricane Harvey (2017) across a low-lying barrier-island cut (Texas, U.S.A.) during sea-to-bay directed flow (i.e., overwash). IG waves were observed to propagate across the island for a period of five hours, superimposed on and depth modulated by very-low frequency storm-driven variability in water level (5.6 min to 2.8 h periods). These sea-level anomalies are hypothesized to be meteotsunami initiated by tropical cyclone rainbands. Estimates of IG energy flux show that IG energy was largely reduced across the island (79–86%) and the magnitude of energy loss was greatest for the lowest-frequency IG waves (<0.01 Hz). Using multitaper bispectral analysis, it is shown that, during overwash, nonlinear triad interactions on the sea-side of the barrier island result in energy transfer from the low-frequency IG peak to bound harmonics at high IG frequencies (>0.01 Hz). Assuming this pattern of nonlinear energy exchange persists across the wide and downward sloping barrier-island cut, it likely contributes to the observed frequency-dependence of cross-barrier IG energy losses during this relatively low surge event (<1 m).





2020 ◽  
Vol 20 (2) ◽  
pp. 413-424
Author(s):  
Yuepeng Cui ◽  
Daan Liang ◽  
Bradley Ewing

Abstract. Hurricanes cause extensive harm to local economies, and in some cases the recovery may take years. As an adequate, skilled, and trained workforce is a prerequisite for economic development and capacity building, employment plays an important role in disaster reduction and mitigation efforts. The statistical relationship between hurricane landfalls and observed changes in employment at the county level is investigated. Hurricane impact is classified into temporary and permanent categories. In the former category, the level of economic activities is lowered following a hurricane landfall but quickly recovers to the pre-storm norm. In contrast, the permanent shift alters the mean value of the data and results in lasting losses in future years. The results show that Hurricane Katrina produced significant permanent impact on Orleans County, Louisiana. Chambers and Fort Bend counties experienced a significant temporary impact due to the landfall of Hurricane Ike. The results are further discussed through a qualitative analysis of various social, economic, and engineering factors in these affected communities. The findings support the notion that a higher resilience level leads to quicker recovery after a disaster. However, the underlying data-generating processes are characterized and tested in a more detailed manner.



2020 ◽  
Vol 40 (6) ◽  
pp. 4059-4071
Author(s):  
Linhao Xu ◽  
◽  
Marya Claire Zdechlik ◽  
Melissa C. Smith ◽  
Min B. Rayamajhi ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document