scholarly journals A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change

BioScience ◽  
2019 ◽  
Vol 69 (11) ◽  
pp. 908-919 ◽  
Author(s):  
Franz Essl ◽  
Stefan Dullinger ◽  
Piero Genovesi ◽  
Philip E Hulme ◽  
Jonathan M Jeschke ◽  
...  

Abstract For many species, human-induced environmental changes are important indirect drivers of range expansion into new regions. We argue that it is important to distinguish the range dynamics of such species from those that occur without, or with less clear, involvement of human-induced environmental changes. We elucidate the salient features of the rapid increase in the number of species whose range dynamics are human induced, and review the relationships and differences to both natural range expansion and biological invasions. We discuss the consequences for science, policy and management in an era of rapid global change and highlight four key challenges relating to basic gaps in knowledge, and the transfer of scientific understanding to biodiversity management and policy. We conclude that range-expanding species responding to human-induced environmental change will become an essential feature for biodiversity management and science in the Anthropocene. Finally, we propose the term neonative for these taxa.

2018 ◽  
Author(s):  
Max Schmid ◽  
Ramon Dallo ◽  
Frédéric Guillaume

AbstractWhile clines in environmental tolerance and phenotypic plasticity along a single species’ range are widespread and of special interest in the context of adaptation to environmental changes, we know little about their evolution. Recent empirical findings in ectotherms suggest that processes underlying dynamic species’ ranges can give rise to spatial differences in environmental tolerance and phenotypic plasticity within species. We used individual-based simulations to investigate how plasticity and tolerance evolve in the course of three scenarios of species’ range shifts and range expansions on environmental gradients. We found that regions of a species’ range which experienced a longer history or larger extent of environmental change generally exhibited increased plasticity or tolerance. Such regions may be at the trailing edge when a species is tracking its ecological niche in space (e.g., in a climate change scenario) or at the front edge when a species expands into a new habitat (e.g., in an expansion/invasion scenario). Elevated tolerance and plasticity in the distribution center was detected when asymmetric environmental change (e.g., polar amplification) led to a range expansion. Greater gene flow across the range had a dual effect on plasticity and tolerance clines, with an amplifying effect in niche expansion scenarios (allowing for faster colonization into novel environments), but with a dampening effect in range shift scenarios (favoring spatial translocation of adapted genotypes). However, tolerance and plasticity clines were transient and slowly flattened out after range dynamics because of genetic assimilation. In general, our approach allowed us to investigate the evolution of environmental tolerance and phenotypic plasticity under transient evolutionary dynamics in non-equilibrium situations, which contributes to a better understanding of observed patterns and of how species may respond to future environmental changes.Impact SummaryIn a variable and changing environment, the ability of a species to cope with a range of selection pressures and a multitude of environmental conditions is critical, both for its’ spatial distribution and its’ long-term persistence. Striking examples of spatial differences in environmental tolerance have been found within species, when single populations differed from each other in their environmental optimum and tolerance breadth, a characteristic that might strongly modify a species’ response to future environmental change. However, we still know little about the evolutionary processes causing these tolerance differences between populations, especially when the differences result from transient evolutionary dynamics in non-equilibrium situations. We demonstrate with individual-based simulations, how spatial differences in environmental tolerance and phenotypic plasticity evolved across a species’ range during three scenarios of range shifts and range expansion. Range dynamics were either driven by environmental change or by the expansion of the ecological niche. The outcome strongly differed between scenarios as tolerance and plasticity were maximized either at the leading edge, at the trailing edge, or in the middle of the species’ range. Spatial tolerance variation resulted from colonization chronologies and histories of environmental change that varied along the range. Subsequent to the range dynamics, the tolerance and plasticity clines slowly leveled out again as result of genetic assimilation such that the described responses are long-lasting, but in the end temporary. These findings help us better understand species’ evolutionary responses during range shifts and range expansion, especially when facing environmental change.


2019 ◽  
Vol 11 (4) ◽  
pp. 957 ◽  
Author(s):  
Pascal Peduzzi

Until the 1970s, disaster risk was perceived as a direct consequence of natural hazards. Gradually, disaster risk has come to be understood as a compound event, which lies at the intersection of hazards, exposure, and vulnerability of the exposed elements. After decades of research and lessons learned from mega-disasters, social scientists have introduced the social dimension of disaster risk, and the prevailing understanding is that disasters are also a human construct. Now, due to climate and global environmental changes, even the natural component of hazards is being altered by anthropogenic activities, changing hazard susceptibility, coverage, frequency, and severity. This review retraces the brief history and evolution of the global understanding of disaster risk as a compound event, in parallel with research on global environmental change. It highlights the main milestones in this area, and shows that there are tight connections between trends of disaster risk and global change. This paper aims to demonstrate the need to better consider the role of global environmental change in disaster risk assessment. In 2015, three major new agreements were reached to improve global environmental governance: the new Sendai Framework (2015–2030), the post-2015 development agenda with the 17 Sustainable Development Goals (SDGs), and the Climate COP21 in Paris. These all include a clear focus on disaster risk reduction; however, several aspects of disaster risk linked with global environmental changes are still not clearly addressed by the main stakeholders (governments, insurers, or agencies). As the complexity of risk unfolds, more actors are getting together; the need for a holistic approach for disaster risk reduction has become clear, and is closely connected with achieving sustainable development.


2015 ◽  
Vol 37 (1) ◽  
pp. i ◽  
Author(s):  
Shikui Dong ◽  
Ruth Sherman

This special issue covers a wide range of topics on the protection and sustainable management of alpine rangelands on the Qinghai-Tibetan Plateau (QTP), including Indigenous knowledge of sustainable rangeland management, science-policy interface for alpine rangeland biodiversity conservation, adaptations of local people to social and environmental changes and policy design for managing coupled human-natural systems of alpine rangelands.


2011 ◽  
Vol 75 (3) ◽  
pp. 658-669 ◽  
Author(s):  
Yurena Yanes ◽  
Crayton J. Yapp ◽  
Miguel Ibáñez ◽  
María R. Alonso ◽  
Julio De-la-Nuez ◽  
...  

AbstractThe isotopic composition of land snail shells was analyzed to investigate environmental changes in the eastern Canary Islands (28–29°N) over the last ~ 50 ka. Shell δ13C values range from −8.9‰ to 3.8‰. At various times during the glacial interval (~ 15 to ~ 50 ka), moving average shell δ13C values were 3‰ higher than today, suggesting a larger proportion of C4 plants at those periods. Shell δ18O values range from −1.9‰ to 4.5‰, with moving average δ18O values exhibiting a noisy but long-term increase from 0.1‰ at ~ 50 ka to 1.6–1.8‰ during the LGM (~ 15–22 ka). Subsequently, the moving average δ18O values range from 0.0‰ at ~ 12 ka to 0.9‰ at present. Calculations using a published snail flux balance model for δ18O, constrained by regional temperatures and ocean δ18O values, suggest that relative humidity at the times of snail activity fluctuated but exhibited a long-term decline over the last ~ 50 ka, eventually resulting in the current semiarid conditions of the eastern Canary Islands (consistent with the aridification process in the nearby Sahara). Thus, low-latitude oceanic island land snail shells may be isotopic archives of glacial to interglacial and tropical/subtropical environmental change.


2010 ◽  
Vol 19 (10) ◽  
pp. 2823-2842 ◽  
Author(s):  
M. D. A. Rounsevell ◽  
T. P. Dawson ◽  
P. A. Harrison

2020 ◽  
Vol 14 (2) ◽  
pp. 405-410
Author(s):  
Courtney L. Angelo ◽  
David J. Rosen ◽  
James J. Lange

This is the first record of Eleocharis mutata in Florida, and the second record in the continental USA, suggesting a potential natural range expansion of this species from the Caribbean region. A key to species of Eleocharis subg. Limnochloa in Florida is included, along with a site description of the occurrence, visual aids for identification, and a brief discussion of nativity.


2018 ◽  
Vol 169 (4) ◽  
pp. 199-202 ◽  
Author(s):  
Christian Messier ◽  
Fanny Maure ◽  
Núria Aquilué

A new approach to immunizing our forests against uncertainty (essay) In the present context of global change, managing our forests is a major challenge, in particular because of the great uncertainty associated with this change. Faced with this new reality, our methods of monitoring and forecasting the developments in our forests are no longer effective enough, so we have to review how we manage our forests. Complexity theory provides a conceptual framework for our approach, which leads us to adopt a more holistic and flexible way of seeing the world when planning our forest management. We must therefore accept that forests are complex and dynamic systems, and for that reason, never completely predictable. By incorporating the functional properties of trees and the complex spatial network of their populations in our forest management, and encouraging greater functional diversity and connectivity, we can immunize the forests against present and future stresses.


Sign in / Sign up

Export Citation Format

Share Document