scholarly journals Incorporating social contact data in spatio-temporal models for infectious disease spread

Biostatistics ◽  
2016 ◽  
pp. kxw051 ◽  
Author(s):  
Sebastian Meyer ◽  
Leonhard Held
2018 ◽  
Vol 285 (1893) ◽  
pp. 20182201 ◽  
Author(s):  
Nele Goeyvaerts ◽  
Eva Santermans ◽  
Gail Potter ◽  
Andrea Torneri ◽  
Kim Van Kerckhove ◽  
...  

Airborne infectious diseases such as influenza are primarily transmitted from human to human by means of social contacts, and thus easily spread within households. Epidemic models, used to gain insight into infectious disease spread and control, typically rely on the assumption of random mixing within households. Until now, there has been no direct empirical evidence to support this assumption. Here, we present the first social contact survey specifically designed to study contact networks within households. The survey was conducted in Belgium (Flanders and Brussels) from 2010 to 2011. We analysed data from 318 households totalling 1266 individuals with household sizes ranging from two to seven members. Exponential-family random graph models (ERGMs) were fitted to the within-household contact networks to reveal the processes driving contact between household members, both on weekdays and weekends. The ERGMs showed a high degree of clustering and, specifically on weekdays, decreasing connectedness with increasing household size. Furthermore, we found that the odds of a contact between older siblings and between father and child are smaller than for any other pair. The epidemic simulation results suggest that within-household contact density is the main driver of differences in epidemic spread between complete and empirical-based household contact networks. The homogeneous mixing assumption may therefore be an adequate characterization of the within-household contact structure for the purpose of epidemic simulations. However, ignoring the contact density when inferring based on an epidemic model will result in biased estimates of within-household transmission rates. Further research regarding the implementation of within-household contact networks in epidemic models is necessary.


Author(s):  
Niel Hens ◽  
Ziv Shkedy ◽  
Marc Aerts ◽  
Christel Faes ◽  
Pierre Van Damme ◽  
...  

2018 ◽  
Vol 7 (2) ◽  
pp. 80
Author(s):  
Jennifer L. Lorio ◽  
Norou Diawara ◽  
Lance A. Waller

Moran's Index is a statistic that measures spatial autocorrelation, quantifying the degree of dispersion (or spread) of objects in space. When investigating data in an area, a single Moran statistic may not give a sufficient summary of the autocorrelation spread. However, by partitioning the area and taking the Moran statistic of each subarea, we discover patterns of the local neighbors not otherwise apparent. In this paper, we consider the model of the spread of an infectious disease, incorporate time factor, and simulate a multilevel Poisson process where the dependence among the levels is captured by the rate of increase of the disease spread over time, steered by a common factor in the scale. The main consequence of our results is that our Moran statistic is calculated from an explicit algorithm in a Monte Carlo simulation setting. Results are compared to Geary's statistic and estimates of parameters under Poisson process are given.


2017 ◽  
Author(s):  
Nele Goeyvaerts ◽  
Eva Santermans ◽  
Gail Potter ◽  
Andrea Torneri ◽  
Kim Van Kerckhove ◽  
...  

Airborne infectious diseases such as influenza are primarily transmitted from human to human by means of social contacts and thus easily spread within households. Epidemic models, used to gain insight in infectious disease spread and control, typically rely on the assumption of random mixing within households. Until now there was no direct empirical evidence to support this assumption. Here, we present the first social contact survey specifically designed to study contact networks within households. The survey was conducted in Belgium (Flanders and Brussels) in 2010-2011. We analyzed data from 318 households totaling 1266 individuals with household sizes ranging from 2 to 7 members. Exponential-family random graph models (ERGMs) were fitted to the within-household contact networks to reveal the processes driving contact between household members, both on weekdays and weekends. The ERGMs showed a high degree of clustering and, specifically on weekdays, decreasing connectedness with increasing household size. Furthermore, we found that the odds of a contact between father and child is smaller than for any other pair except for older siblings. Epidemic simulation results suggest that within-household contact density is the main driver of differences in epidemic spread between complete and empirical-based household contact networks. The homogeneous mixing assumption may therefore be an adequate characterization of the within-household contact structure for the purpose of epidemic simulation. However, ignoring the contact density when inferring from an epidemic model will result in biased estimates of within-household transmission rates. Further research on the implementation of within-household contact networks in epidemic models is necessary.Significance StatementHouseholds have a pivotal role in the spread of airborne infectious diseases. Households are bridging units between schools and workplaces, and social contacts within households are frequent and intimate, allowing for rapid disease spread. Infectious disease models typically assume that members of a household contact each other randomly. Until now there was no direct empirical evidence to support this assumption. In this paper, we present the first social contact survey specifically designed to study contact networks within households with young children. We investigate which factors drive contacts between household members on one particular day by means of a statistical model. Our results suggest the importance of connectedness within households over heterogeneity in number of contacts.


Author(s):  
Awino M. E. Ojwang' ◽  
Trevor Ruiz ◽  
Sharmodeep Bhattacharyya ◽  
Shirshendu Chatterjee ◽  
Peter S. Ojiambo ◽  
...  

The spread dynamics of long-distance-dispersed pathogens are influenced by the dispersal characteristics of a pathogen, anisotropy due to multiple factors, and the presence of multiple sources of inoculum. In this research, we developed a flexible class of phenomenological spatio-temporal models that extend a modeling framework used in plant pathology applications to account for the presence of multiple sources and anisotropy of biological species that can govern disease gradients and spatial spread in time. We use the cucurbit downy mildew pathosystem (caused by Pseudoperonospora cubensis) to formulate a data-driven procedure based on the 2008 to 2010 historical occurrence of the disease in the U.S. available from standardized sentinel plots deployed as part of the Cucurbit Downy Mildew ipmPIPE program. This pathosystem is characterized by annual recolonization and extinction cycles, generating annual disease invasions at the continental scale. This data-driven procedure is amenable to fitting models of disease spread from one or multiple sources of primary inoculum and can be specified to provide estimates of the parameters by regression methods conditional on a function that can accommodate anisotropy in disease occurrence data. Applying this modeling framework to the cucurbit downy mildew data sets, we found a small but consistent reduction in temporal prediction errors by incorporating anisotropy in disease spread. Further, we did not find evidence of an annually occurring, alternative source of P. cubensis in northern latitudes. However, we found a signal indicating an alternative inoculum source on the western edge of the Gulf of Mexico. This modeling framework is tractable for estimating the generalized location and velocity of a disease front from sparsely sampled data with minimal data acquisition costs. These attributes make this framework applicable and useful for a broad range of ecological data sets where multiple sources of disease may exist and whose subsequent spread is directional.


2015 ◽  
Vol 370 (1669) ◽  
pp. 20140107 ◽  
Author(s):  
Meggan E. Craft

The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools.


2020 ◽  
Author(s):  
Brendon Phillips ◽  
Chris T. Bauch

AbstractSudden shifts in population health and vaccination rates occur as the dynamics of some epidemiological models go through a critical point; literature shows that this is sometimes foreshadowed by early warning signals (EWS). We investigate different structural measures of a network as candidate EWS of infectious disease outbreaks and changes in popular vaccine sentiment. We construct a multiplex disease model coupling infectious disease spread and social contact dynamics. We find that the number and mean size of echo chambers predict transitions in the infection dynamics, as do opinion-based communities. Graph modularity also gives early warnings, though the clustering coefficient shows no significant pre-outbreak changes. Change point tests applied to the EWS show decreasing efficacy as social norms strengthen. Therefore, many measures of social network connectivity can predict approaching critical changes in vaccine uptake and aggregate health, thereby providing valuable tools for improving public health.


2012 ◽  
Vol 7 (3) ◽  
pp. 615-638 ◽  
Author(s):  
Irene Vrbik ◽  
Rob Deardon ◽  
Zeny Feng ◽  
Abbie Gardner ◽  
John Braun

2009 ◽  
Vol 218 (2) ◽  
pp. 80-87 ◽  
Author(s):  
Benson Ogunjimi ◽  
Niel Hens ◽  
Nele Goeyvaerts ◽  
Marc Aerts ◽  
Pierre Van Damme ◽  
...  

2021 ◽  
Vol 10 (3) ◽  
pp. 188
Author(s):  
Cyril Carré ◽  
Younes Hamdani

Over the last decade, innovative computer technologies and the multiplication of geospatial data acquisition solutions have transformed the geographic information systems (GIS) landscape and opened up new opportunities to close the gap between GIS and the dynamics of geographic phenomena. There is a demand to further develop spatio-temporal conceptual models to comprehensively represent the nature of the evolution of geographic objects. The latter involves a set of considerations like those related to managing changes and object identities, modeling possible causal relations, and integrating multiple interpretations. While conventional literature generally presents these concepts separately and rarely approaches them from a holistic perspective, they are in fact interrelated. Therefore, we believe that the semantics of modeling would be improved by considering these concepts jointly. In this work, we propose to represent these interrelationships in the form of a hierarchical pyramidal framework and to further explore this set of concepts. The objective of this framework is to provide a guideline to orient the design of future generations of GIS data models, enabling them to achieve a better representation of available spatio-temporal data. In addition, this framework aims at providing keys for a new interpretation and classification of spatio-temporal conceptual models. This work can be beneficial for researchers, students, and developers interested in advanced spatio-temporal modeling.


Sign in / Sign up

Export Citation Format

Share Document