scholarly journals PLASMA PROTEIN CONCENTRATION AND RECOVERY FROM ANAESTHESIA IN MAN

1981 ◽  
Vol 53 (12) ◽  
pp. 1281-1284 ◽  
Author(s):  
G. TORRI ◽  
L. STELLA ◽  
G. PRADELLA ◽  
E. MAESTRONE ◽  
C. MARTANI
1998 ◽  
Vol 274 (3) ◽  
pp. H937-H944 ◽  
Author(s):  
M. Miyamoto ◽  
D. E. McClure ◽  
E. R. Schertel ◽  
P. J. Andrews ◽  
G. A. Jones ◽  
...  

In previous studies, we observed left ventricular (LV) systolic and diastolic dysfunction in association with interstitial myocardial edema (IME) induced by either coronary venous hypertension (CVH) or lymphatic obstruction. In the present study, we examined the effects of myocardial edema induced by acute hypoproteinemia (HP) on LV systolic and diastolic function. We also combined the methods of HP and CVH (HP-CVH) to determine their combined effects on LV function and myocardial water content (MWC). We used a cell-saving device to lower plasma protein concentration in HP and HP-CVH groups. CVH was induced by inflating the balloon in the coronary sinus. Six control dogs were treated to sham HP. Conductance and micromanometer catheters were used to assess LV function. Contractility, as measured by preload recruitable stroke work, did not change in control or HP groups but declined significantly (14.5%) in the HP-CVH group. The time constant of isovolumic LV pressure decline (τ) increased significantly from baseline by 3 h in the HP (24.8%) and HP-CVH (27.1%) groups. The end-diastolic pressure-volume relationship (stiffness) also increased significantly from baseline by 3 h in the HP (78.6%) and HP-CVH (42.6%) groups. Total plasma protein concentration decreased from 5.2 ± 0.2 g/dl at baseline to 2.5 ± 0.0 g/dl by 3 h in the HP and HP-CVH groups. MWC of the HP (79.8 ± 0.25%) and HP-CVH groups (79.8 ±0.2%) were significantly greater than that of the control group (77.8 ± 0.3%) but not different from one another. In conclusion, hypoproteinemia-induced myocardial edema was associated with diastolic LV dysfunction but not systolic dysfunction. The edema caused by hypoproteinemia was more than twice that produced by our previous models, yet it was not associated with systolic dysfunction. CVH had a negative inotropic effect and no significant influence on MWC. IME may not have the inverse causal relationship with LV contractility that has been previously postulated but appears to have a direct causal association with diastolic stiffness as has been previously demonstrated.


1986 ◽  
Vol 6 (2) ◽  
pp. 93-98 ◽  
Author(s):  
Claudio Ronco ◽  
Alessandra Brendolan ◽  
Luisa Bragantini Stefano ◽  
Chiaramonte Mariano ◽  
Feriani Aldo Fabris ◽  
...  

This study has evaluated the influence of peritoneal blood flow and plasma protein concentration on the peritoneal ultrafiltration rate. In vitro and in vivo experiments were done to assess the effective peritoneal capillary blood flow. Based on the assumption that one can compare the behavior of an hollow fiber hemofilter with the peritoneal dialysis system, we have compared the opera tional characteristics of the two systems. After demonstrating that there was filtration pressure equilibrium in the filter, the plasma protein concentration was measured in the venous site of the filter at different applied transmembrane pressures. The nomogram, so obtained, was used to calculate the plasma-protein concentration in the blood leaving the peritoneal capillary during exchanges with an established glucose concentration (and therefore at a given transmembrane pressure), and to calculate the filtration fraction. Once that fraction had been calculated, based on the value of the ultrafiltration rate, one can calculate the importance of the plasma flow and then the blood flow. In this study the filtration fraction ranged between 45 and 55% and the blood flow ranged between 21 and 27 ml/min. It was concluded that the blood flow may be very low and hence may limit ultrafiltration.


1990 ◽  
Vol 259 (5) ◽  
pp. H1317-H1324
Author(s):  
R. D. Manning

Studies were performed in 14 conscious, anephric dogs to clarify the role of blood volume in the genesis of hypertension. The dogs were splenectomized and had plasma protein concentration (PPC) reduced to 2.7 g/dl by daily plasmapheresis for 9 days. This hypoproteinemia resulted in a 20% decrease in both blood volume and mean arterial pressure. On the 10th day the dogs were nephrectomized. On the 11th day after a 3-h control period with plasmapheresis, lactated Ringer equivalent to 10 or 20% of body weight was intravenously infused. By 25 h postinfusion blood volume had not increased, and the dogs were still hypotensive. At 25 h plasma protein mass was returned to normal by intravenous infusion of autologous plasma, the average blood volume of the three low PPC groups increased approximately 50%, and the arterial pressure increased greater than 60%. The decrease in PPC shifted the regression of blood volume on sodium space down the blood volume axis. In conclusion, the dependence of arterial pressure on blood volume was demonstrated by the decrease in both blood volume and arterial pressure after PPC reduction, the constancy of blood volume and pressure during Ringer infusion, and the increase in both volume and pressure after plasma infusion.


1987 ◽  
Vol 62 (6) ◽  
pp. 2252-2257 ◽  
Author(s):  
M. B. Maron ◽  
C. F. Pilati ◽  
K. C. Maender

The osmotic reflection coefficient (sigma) can be estimated from the increases in hematocrit and plasma protein concentration that result from fluid filtration occurring in an isolated perfused organ. We determined what effect perfusion pump-induced hemolysis has on the value of sigma determined by this technique in both the isolated canine left lower lung lobe (LLL) and forelimb by comparing estimates of sigma obtained before and after correction for hemolysis. Hemolysis was corrected by using the slopes of the relationships between hematocrit and plasma hemoglobin concentration and between the plasma protein and hemoglobin concentrations to correct hematocrit and protein concentration to a state of zero hemolysis. Uncorrected estimates of sigma in the LLL were 1.19 +/- 0.14 (SE) at a venous pressure (Pv) of 12 Torr (n = 7) and 0.90 +/- 0.02 at a Pv of 19 Torr (n = 6). Both sets of LLL's yielded sigma values of 0.77 +/- 0.03 after hemolysis correction. In the forelimb (n = 5), uncorrected and corrected estimates of sigma of 0.99 +/- 0.03 and 0.85 +/- 0.01, respectively, were obtained. The latter values were similar to sigma's (0.88 +/- 0.01) determined by lymph analysis in five additional forelimbs. We conclude that hemolysis results in overestimates of sigma. After hemolysis correction, this technique yields similar results to those obtained from lymph analysis for the forelimb and from published values for the LLL.


1963 ◽  
Vol 18 (6) ◽  
pp. 1123-1129 ◽  
Author(s):  
Rudolf Holemans

Venous occlusion for 10 min, by a sphygmomanometer cuff applied above the elbow and maintained at a pressure midway between systolic and diastolic pressure, increases the fibrinolytic activity of the blood within the occluded part of the arm. In six normal human subjects the magnitude of this increase was compared with changes in blood cellular elements, plasma protein concentration, plasma antifibrinolytic activity, and plasma levels of glutamic-oxalacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). The increase in fibrinolytic activity of the euglobulin fraction of the plasma was 3–20 times larger than the increase in plasma protein concentration and 8–24 times larger than the increase in hematocrit. Venous occlusion produced a rise in antiplasmin and antiurokinase activity of the plasma. The level of GOT in the plasma rose significantly more than the plasma protein concentration. These observations tend to indicate that the activation of fibrinolysis during venous occlusion is brought about by the release of intracellular enzyme(s). fibrinolytic activity of blood; euglobulins; antiplasmin; antiurokinase Submitted on May 31, 1963


Sign in / Sign up

Export Citation Format

Share Document