11 Understanding the Clinical Performance of Ceramic Coated Femoral Components in Knee Arthroplasty Surgery

2021 ◽  
Vol 108 (Supplement_6) ◽  
Author(s):  
H Khatkar ◽  
M Prokopenko

Abstract Aim In vitro knee simulation has demonstrated favourable wear properties and decreased metal ion release of ceramic coated metal femoral components in total knee arthroplasty surgery. Femoral implants coated with ceramic have been used in patients, however the subsequent clinical performance and time-to-revision of these implants is largely unknown. The scope of this study was to review the current available clinical literature, focusing on retrieval studies of Ceramic-Coated TKAs. Method Literature review of PubMed and MEDLINE. All studies included demonstrated clinical evaluation of implant performance, either in vivo or at revision. Results 9 studies were identified and included for analysis in this study. Retrieval analysis has illustrated microscopic defects in coatings of revised implants, with associated abrasion and 3rd body wear of the polyethylene component. Evidence suggests that coating femoral components with ceramic can prevent effective cement bonding, leading to aseptic loosening and thus earlier implant failure. Despite these problems, high volume centres have been able to demonstrate comparable results when compared with traditional bearing surface combinations. The mechanism behind metal ion hypersensitivity is currently poorly understood; however, the use of ceramic coated knee replacements is demonstrating a reduction in metal ion release. Conclusions Whilst conferring favourable clinical properties in certain instances, the lack of surgical, implant and patient data surrounding the use of this coated implants remains concerning. The literature base remains limited, and meaningful clinical conclusions cannot be drawn. Recommendations include performing robust clinical trials in order to delineate the clinical efficacy of ceramic coatings in knee arthroplasty.

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 857
Author(s):  
Lasni Samalka Kumarasinghe ◽  
Neethu Ninan ◽  
Panthihage Ruvini Lakshika Dabare ◽  
Alex Cavallaro ◽  
Esma J. Doğramacı ◽  
...  

The metal ion release characteristics and biocompatibility of meta-based materials are key factors that influence their use in orthodontics. Although stainless steel-based alloys have gained much interest and use due to their mechanical properties and cost, they are prone to localised attack after prolonged exposure to the hostile oral environment. Metal ions may induce cellular toxicity at high dosages. To circumvent these issues, orthodontic brackets were coated with a functional nano-thin layer of plasma polymer and further immobilised with enantiomers of tryptophan. Analysis of the physicochemical properties confirmed the presence of functional coatings on the surface of the brackets. The quantification of metal ion release using mass spectrometry proved that plasma functionalisation could minimise metal ion release from orthodontic brackets. Furthermore, the biocompatibility of the brackets has been improved after functionalisation. These findings demonstrate that plasma polymer facilitated surface functionalisation of orthodontic brackets is a promising approach to reducing metal toxicity without impacting their bulk properties.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sung-Hyun Kim ◽  
Jin Hee Lee ◽  
Kikyung Jung ◽  
Jun-Young Yang ◽  
Hyo-Sook Shin ◽  
...  

Human skins are exposed to nanomaterials in everyday life from various sources such as nanomaterial-containing cosmetics, air pollutions, and industrial nanomaterials. Nanomaterials comprising metal haptens raises concerns about the skin sensitization to nanomaterials. In this study, we evaluated the skin sensitization of nanomaterials comparing metal haptens in vivo and in vitro. We selected five metal oxide NPs, containing copper oxide, cobalt monoxide, cobalt oxide, nickel oxide, or titanium oxide, and two types of metal chlorides (CoCl2 and CuCl2), to compare the skin sensitization abilities between NPs and the constituent metals. The materials were applied to KeratinoSensTM cells for imitated skin-environment setting, and luciferase induction and cytotoxicity were evaluated at 48 h post-incubation. In addition, the response of metal oxide NPs was confirmed in lymph node of BALB/C mice via an in vivo method. The results showed that CuO and CoO NPs induce a similar pattern of positive luciferase induction and cytotoxicity compared to the respective metal chlorides; Co3O4, NiO, and TiO2 induced no such response. Collectively, the results implied fast-dissolving metal oxide (CuO and CoO) NPs release their metal ion, inducing skin sensitization. However, further investigations are required to elucidate the mechanism underlying NP-induced skin sensitization. Based on ion chelation data, metal ion release was confirmed as the major “factor” for skin sensitization.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 368 ◽  
Author(s):  
Sammy Noumbissi ◽  
Antonio Scarano ◽  
Saurabh Gupta

This review of literature paper was done in order to conduct a review of the literature and an assessment of the effects of titanium implant corrosion on peri-implant health and success in the oral environment. This paper evaluates and critically reviews the findings of the multiple in-depth in vivo and in vitro studies that are related to corrosion aspects of the titanium and its alloys. A literature survey was conducted by electronic search in Medline and studies that were published between 1940 and August 2018 were selected. The search terms used were types of corrosion, corrosion of titanium implants, titanium corrosion, metal ion release from the titanium implants, fretting and pitting corrosion, implant corrosion, peri implantitis, and corrosion. Both in vivo and in vitro studies were also included in the review. The search and selection resulted in 64 articles. These articles were divided on the basis of their context to different kinds of corrosion related to titanium dental implants. It is evident that metal ions are released from titanium and titanium alloy dental implants as a result of corrosion. Corrosion of implants is multifactorial, including electrical, chemical, and mechanical factors, which have an effect on the peri-implant tissues and microbiota. The literature surveyed showed that corrosion related to titanium and its alloys has an effect on the health of peri-implant soft and hard tissue and the long term survival of metal dental implants. It can be concluded that presence of the long-term corrosion reaction along with continuous corrosion leads to the release of ions into the peri-implant tissue but also to a disintegration of the implant that contribute to material fatigue and even fracture of the abutments and implant body or both. This combined impact of the corrosion, bacterial activity, chemical reactions, and functional stresses are to be looked at as important factors of implant failure. The findings can be used to explore the possible strategies of research to investigate the biological impact of implant materials.


2020 ◽  
Vol 102-B (7_Supple_B) ◽  
pp. 116-121
Author(s):  
G. Heise ◽  
C. M. Black ◽  
R. Smith ◽  
B. R. Morrow ◽  
W. M. Mihalko

Aims This study aimed to determine if macrophages can attach and directly affect the oxide layers of 316L stainless steel, titanium alloy (Ti6Al4V), and cobalt-chromium-molybdenum alloy (CoCrMo) by releasing components of these alloys. Methods Murine peritoneal macrophages were cultured and placed on stainless steel, CoCrMo, and Ti6Al4V discs into a 96-well plate. Cells were activated with interferon gamma and lipopolysaccharide. Macrophages on stainless steel discs produced significantly more nitric oxide (NO) compared to their control counterparts after eight to ten days and remained elevated for the duration of the experiment. Results On stainless steel, both nonactivated and activated cell groups were shown to have a significant increase in metal ion release for Cr, Fe, and Ni (p < 0.001, p = 0.002, and p = 0.020 respectively) compared with medium only and showed macrophage-sized corrosive pits on the stainless steel surface. On titanium alloy discs there was a significant increase in aluminum (p < 0.001) among all groups compared with medium only. Conclusion These results indicated that macrophages were able to attach to and affect the oxide surface of stainless steel and titanium alloy discs. Cite this article: Bone Joint J 2020;102-B(7 Supple B):116–121.


2020 ◽  
Vol 12 (2) ◽  
pp. 396-403
Author(s):  
Tobias Reiner ◽  
Reza Sorbi ◽  
Maike Müller ◽  
Timo Nees ◽  
Jan Philippe Kretzer ◽  
...  

1988 ◽  
Vol 22 (4) ◽  
pp. 321-338 ◽  
Author(s):  
Stanley A. Brown ◽  
Lilian J. Farnsworth ◽  
Katharine Merritt ◽  
Timothy D. Crowe

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 857
Author(s):  
Radu Mirea ◽  
Iuliana Manuela Biris ◽  
Laurentiu Constantin Ceatra ◽  
Razvan Ene ◽  
Alexandru Paraschiv ◽  
...  

In this study, a CoCrMo-based metallic alloy was manufactured using a 3D-printing method with metallic powder and a laser-based 3D printer. The obtained material was immersed in a simulated body fluid (SBF) similar to blood plasma and kept 2 months at 37 °C and in relative motion against the SBF in order to mimic the real motion of body fluids against an implant. At determined time intervals (24, 72, 168, 336, and 1344 h), both the metallic sample and SBF were characterized from a physical-chemical point of view in order to assess the alloy’s behaviour in the SBF. Firstly, the CoCrMo based metallic sample was characterized by scanning electron microscopy (SEM) for assessing surface corrosion and X-ray diffraction (XRD) for determining if and/or what kind of spontaneous protective layer was formed on the surface; secondly, the SBF was characterized by pH, electrical conductivity (EC), and inductively coupled plasma mass spectroscopy (ICP-MS) for assessing the metal ion release. We determined that a 3D-printed CoCrMo alloy does not represent a potential biological hazard in terms of the concentration of metal ion releases, since it forms, in a relatively short period of time, a protective CoCr layer on its exposed surface.


Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 282 ◽  
Author(s):  
Mokhamad Fakhrul Ulum ◽  
Wahyu Caesarendra ◽  
Reza Alavi ◽  
Hendra Hermawan

Absorbable metals have been introduced as materials to fabricate temporary medical implants. Iron, magnesium and zinc have been considered as major base elements of such metals. The metallurgical characterization and in-vitro corrosion assessment of these metals have been covered by the new ASTM standards F3160 and F3268. However, the in-vivo corrosion characterization and assessment of absorbable metal implants are not yet well established. The corrosion of metals in the in-vivo environment leads to metal ion release and corrosion product formation that may cause excessive toxicity. The aim of this work is to introduce the techniques to assess absorbable metal implants and their in-vivo corrosion behavior. This contains the existing approaches, e.g., implant retrieval and histological analysis, ultrasonography and radiography, and the new techniques for real-time in-vivo corrosion monitoring.


2013 ◽  
Vol 10 (86) ◽  
pp. 20130428 ◽  
Author(s):  
R. Tsaryk ◽  
K. Peters ◽  
R. E. Unger ◽  
M. Feldmann ◽  
B. Hoffmann ◽  
...  

Cobalt-based materials are widely used for coronary stents, as well as bone and joint implants. However, their use is associated with high corrosion incidence. Titanium alloys, by contrast, are more biocompatible owing to the formation of a relatively inactive titanium oxide (TiO 2 ) layer on their surface. This study was aimed at improving Co28Cr6Mo alloy cytocompatibility via sol–gel TiO 2 coating to reduce metal corrosion and metal ion release. Owing to their role in inflammation and tissue remodelling around an implant, endothelial cells present a suitable in vitro model for testing the biological response to metallic materials. Primary human endothelial cells seeded on Co28Cr6Mo showed a stress phenotype with numerous F-actin fibres absent on TiO 2 -coated material. To investigate this effect at the gene expression level, cDNA microarray analysis of in total 1301 genes was performed. Compared with control cells, 247 genes were expressed differentially in the cells grown on Co28Cr6Mo, among them genes involved in proliferation, oxidative stress response and inflammation. TiO 2 coating reduced the effects of Co28Cr6Mo on gene expression in endothelial cells, with only 34 genes being differentially expressed. Quantitative real-time polymerase chain reaction and protein analysis confirmed microarray data for selected genes. The effect of TiO 2 coating can be, in part, attributed to the reduced release of Co 2+ , because addition of CoCl 2 resulted in similar cellular responses. TiO 2 coating of cobalt-based materials, therefore, could be used in the production of cobalt-based devices for cardiovascular and skeletal applications to reduce the adverse effects of metal corrosion products and to improve the response of endothelial and other cell types.


Sign in / Sign up

Export Citation Format

Share Document