scholarly journals Homocysteine is a risk factor for cerebral small vessel disease, acting via endothelial dysfunction

Brain ◽  
2004 ◽  
Vol 127 (1) ◽  
pp. 212-219 ◽  
Author(s):  
A. Hassan
2015 ◽  
Vol 36 (1) ◽  
pp. 72-94 ◽  
Author(s):  
Anna Poggesi ◽  
Marco Pasi ◽  
Francesca Pescini ◽  
Leonardo Pantoni ◽  
Domenico Inzitari

The term cerebral small vessel disease (SVD) refers to a group of pathologic processes with various etiologies that affect small arteries, arterioles, venules, and capillaries of the brain. Magnetic resonance imaging (MRI) correlates of SVD are lacunes, recent small subcortical infarcts, white-matter hyperintensities, enlarged perivascular spaces, microbleeds, and brain atrophy. Endothelial dysfunction is thought to have a role in the mechanisms leading to SVD-related brain changes, and the study of endothelial dysfunction has been proposed as an important step for a better comprehension of cerebral SVD. Among available methods to assess endothelial function in vivo, measurement of molecules of endothelial origin in peripheral blood is currently receiving selective attention. These molecules include products of endothelial cells that change when the endothelium is activated, as well as molecules that reflect endothelial damage and repair. This review examines the main molecular factors involved in both endothelial function and dysfunction, and the evidence linking endothelial dysfunction with cerebral SVD, and gives an overview of clinical studies that have investigated the possible association between endothelial circulating biomarkers and SVD-related brain changes.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 994
Author(s):  
Natasha Ting Lee ◽  
Lin Kooi Ong ◽  
Prajwal Gyawali ◽  
Che Mohd Nasril Che Mohd Nassir ◽  
Muzaimi Mustapha ◽  
...  

The cerebral endothelium is an active interface between blood and the central nervous system. In addition to being a physical barrier between the blood and the brain, the endothelium also actively regulates metabolic homeostasis, vascular tone and permeability, coagulation, and movement of immune cells. Being part of the blood–brain barrier, endothelial cells of the brain have specialized morphology, physiology, and phenotypes due to their unique microenvironment. Known cardiovascular risk factors facilitate cerebral endothelial dysfunction, leading to impaired vasodilation, an aggravated inflammatory response, as well as increased oxidative stress and vascular proliferation. This culminates in the thrombo-inflammatory response, an underlying cause of ischemic stroke and cerebral small vessel disease (CSVD). These events are further exacerbated when blood flow is returned to the brain after a period of ischemia, a phenomenon termed ischemia-reperfusion injury. Purinergic signaling is an endogenous molecular pathway in which the enzymes CD39 and CD73 catabolize extracellular adenosine triphosphate (eATP) to adenosine. After ischemia and CSVD, eATP is released from dying neurons as a damage molecule, triggering thrombosis and inflammation. In contrast, adenosine is anti-thrombotic, protects against oxidative stress, and suppresses the immune response. Evidently, therapies that promote adenosine generation or boost CD39 activity at the site of endothelial injury have promising benefits in the context of atherothrombotic stroke and can be extended to current CSVD known pathomechanisms. Here, we have reviewed the rationale and benefits of CD39 and CD39 therapies to treat endothelial dysfunction in the brain.


2018 ◽  
Vol 10 (448) ◽  
pp. eaam9507 ◽  
Author(s):  
Rikesh M. Rajani ◽  
Sophie Quick ◽  
Silvie R. Ruigrok ◽  
Delyth Graham ◽  
Sarah E. Harris ◽  
...  

Oral Diseases ◽  
2018 ◽  
Vol 25 (3) ◽  
pp. 710-719 ◽  
Author(s):  
Ghazal Aarabi ◽  
Götz Thomalla ◽  
Guido Heydecke ◽  
Udo Seedorf

2021 ◽  
Vol 12 ◽  
Author(s):  
Shuang Li ◽  
Guangjian Li ◽  
Xia Luo ◽  
Yan Huang ◽  
Lan Wen ◽  
...  

Cerebral small vessel disease (cSVD)—a common cause of stroke and vascular dementia—is a group of clinical syndromes that affects the brain's small vessels, including arterioles, capillaries, and venules. Its pathogenesis is not fully understood, and effective treatments are limited. Increasing evidence indicates that an elevated total serum homocysteine level is directly and indirectly associated with cSVD, and endothelial dysfunction plays an active role in this association. Hyperhomocysteinemia affects endothelial function through oxidative stress, inflammatory pathways, and epigenetic alterations at an early stage, even before the onset of small vessel injuries and the disease. Therefore, hyperhomocysteinemia is potentially an important therapeutic target for cSVD. However, decreasing the homocysteine level is not sufficiently effective, possibly due to delayed treatment, which underlying reason remains unclear. In this review, we examined endothelial dysfunction to understand the close relationship between hyperhomocysteinemia and cSVD and identify the optimal timing for the therapy.


Sign in / Sign up

Export Citation Format

Share Document