scholarly journals Effect of Dietary Fermentable Carbohydrate Supplementation on Amino Acid Homeostasis

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 379-379
Author(s):  
Sijia Wang ◽  
Jing Wang ◽  
Tianyu Qing ◽  
Yajing Pan ◽  
Jieping Yang ◽  
...  

Abstract Objectives Homeostasis of amino acids (AA) such as branched chain AAs (BCAAs), and aromatic AAs are associated with glucose regulation. Fermentable carbohydrates (FC), such as xylooligosaccharide (XOS), have been shown to improve glucose and lipid metabolism. Therefore, we aim to study the potential of dietary FC to modulate systemic and tissue specific amino acid (AA) homeostasis in normal physiological condition. Two FCs of different molecular size were included in this study, XOS (0.3–1 kDa) and a new sulfated fucose containing polysaccharide (SPS) isolated from seaweed (82 kDa). Methods Male C57BL6 mice at age 7 week were randomized into three groups and fed AIN93M, AIN93M supplemented with 2% XOS or SPS (w/w) for 8 weeks (n = 6–8/group). SPS was prepared from Laminaria japonica. At the end of the intervention, fasting serum samples were collected and processed for glucose, insulin, AA analysis. Liver and skeletal muscle samples were frozen and processed for AA analysis. Results Blood glucose was significantly lower in XOS-fed mice but not SPS-fed mice compared to mice fed the control AIN93M diet. No significant differences in blood insulin, lipids, AA as well as body weight and fat depots were observed among the three experimental groups (XOS, SPS and control). In skeletal muscle, the concentration of total free AA, as well as 9 AAs (Asp, Glu, Arg, Tyr, Met, Phe and BCAAs) was significantly lower and 1 AA (Thr) was higher in SPS mice compared to control mice, while free AA levels in skeletal muscle were not significantly different between XOS and control mice. In liver, levels of total free AA, Arg, Thr and leucine metabolite ketoleucine were significantly lower in XOS mice compared to control mice. No significant change in free AA levels in liver was observed between SPS and control mice. Conclusions Our data show the differential modulation of systemic and tissue-specific AA and glucose homeostasis by dietary XOS and SPS intake, indicating the key role that AA signaling may play in metabolic homeostasis. Funding Sources This project was supported by the National Institutes of Health and UCLA Center for Human Nutrition.

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 455-455 ◽  
Author(s):  
Tianyu Qin ◽  
Yajing Pan ◽  
Jing Wang ◽  
Sijia Wang ◽  
Jieping Yang ◽  
...  

Abstract Objectives Systemic amino acid (AA) levels are tightly regulated. Homeostasis of certain AAs, such as branched chain AAs (BCAAs), and aromatic AAs are not only associated with impaired glucose control but also important determinants of mood. The health benefits of dietary xylooligosaccharides (XOS) in glucose control have been published. In addition, XOS consumption was reported to increase participant-reported vitality and happiness. Therefore, we hypothesized that dietary XOS supplementation induce changes of AA homeostasis, which contributes to its metabolic and mood benefit. Methods Male db/db BSK mice and their respective lean control db/m BSK mice were used in this study. Mice at age 7 wk were randomized into three groups and fed AIN93M, AIN93M + 2%−, or 7%-XOS (w/w) for 8 weeks (n = 8–10/group). At the end of the intervention, fasting serum samples were collected and processed for glucose, insulin, AA analysis. Results db/db mice developed obesity, hyperglycemia and hyperinsulinemia compared to db/m mice. We did not detect difference in serum BCAAs and aromatic AAs, including phenylalanine (phe), tryptophan (Trp) and tyrosine (Tyr) between db/db and db/m mice. Serum arginine (Arg), proline (Pro) and methionine (Met) were significantly lower in db/db compared db/m. Dietary XOS supplementation (2 and 7%) did not change body weight and fat depots in db/m and db/db mice. Fasting blood glucose, Met and Pro levels were significantly reduced by 7% XOS in db/m not db/db mice. XOS did not change any other AAs in either db/db or db/m mice. Serum Trp microbial metabolites indole acetate (IAA) was significantly higher while indole propionate (IPA) was lower in db/db mice compared to db/m mice. XOS (both 2 and 7%) decreased IAA in both db/m and db/db mice, while 2% XOS increased IPA only in db/db mice. Tyr was decreased by 7% XOS in db/m mice but not db/db mice, while Tyr metabolite, p-cresol sulfate, was reduced by 2% XOS in db/db mice only. Conclusions Our data indicate interactions between dietary XOS and Leptin R genotype/or host metabolic status on glucose control and systemic AA homeostasis. The mechanism of how dietary XOS intake modulate AA homeostasis needs further investigation. Funding Sources This project was supported by NIH-R01 and Center for Human Nutrition.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1878-P
Author(s):  
LIANGHUI YOU ◽  
YU ZENG ◽  
NAN GU ◽  
CHENBO JI

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S27-S28
Author(s):  
Jeffrey Gruenglas ◽  
James Mond ◽  
Micaela Scobie ◽  
Cynthia Tolman ◽  
Joseph Martinez

Abstract Background S. pneumonia infection presents a significant challenge, accounting for 20–38% of hospital-acquired pneumonia, and the leading cause of community-acquired pneumonia despite availability of effective vaccines. Incidence is highest in children under 2 years, the immunocompromised, and elderly. CDC has reported the emergence of antibiotic resistance in ~30% of cases, adding to risk of morbidity and mortality. Fewer than half of the elderly are vaccinated and vulnerable to infection on admission. Passive immunotherapy as an adjunct to vaccines may improve outcomes in such populations. The objective of this study was to evaluate whether seroprotective response induced with a pneumococcal conjugate vaccine could rapidly yield protective opsonic levels of antibody within anticipated duration of hospitalization. Methods Healthy donors (n=30) were immunized with Prevnar. Blood was drawn on days 0, 3, 7, 10, 14, 21, and 28. Samples were pooled and tested for presence of functional opsonic antibodies recognizing capsular polysaccharides. Clearance mechanism of S. pneumonia was based on antibody recognition to pneumococcal capsular polysaccharide and opsonic titers used as an in vitro surrogate to evaluate the efficacy of vaccine. Results There was little to no opsonic activity against most serotypes on day 0, except for low antibody activity with serotypes 1, 3, 4, and 5. Titers increased, with protective levels achieved by day 10 for most serotypes (except 14 and 18C), peaking at day 14 or after across serotypes (Figures 1 and 2). Average titers rose from log2 titer 2 on day 0 to log2 titer 8 on days 21 and 28. Titers against most serotypes reached log2 10 (titer 1024) or higher. Patients remained susceptible to nosocomial infection for at least 10 days post admission until protective titers are reached. OPK titers (log2 scale) for serum samples on day 0 (pre), day 3, 7, 10, 14, 21, 28, and control for S. pneumoniae serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V. N=2. OPK titers (log2 scale) for serum samples on day 0 (pre), day 3, 7, 10, 14, 21, 28, and control for S. pneumoniae serotypes 14, 18C, 19A, 19F, and 23F. N=2. Conclusion Patients with no prior history of vaccination (or inability to mount response) with Prevnar or pneumovax remain vulnerable to S. pneumonia infection even if vaccinated on entry, due to delayed kinetics in reaching protective titers. These patients may require prophylactic intervention of hyperimmune Ig with high opsonic titers to S. pneumonia, providing protection until vaccine response elicits protective antibodies. Disclosures All Authors: No reported disclosures


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 118-119
Author(s):  
Teresa A Davis ◽  
Marko Rudar ◽  
Jane Naberhuis ◽  
Agus Suryawan ◽  
Marta Fiorotto

Abstract Livestock animals are important dual-purpose models that benefit both agricultural and biomedical research. The neonatal pig is an appropriate model for the human infant to assess long-term effects of early life nutrition on growth and metabolic outcomes. Previously we have demonstrated that prematurity blunts the feeding-induced stimulation of translation initiation and protein synthesis in skeletal muscle of neonatal pigs. The objective of this study was to determine whether reduced sensitivity to insulin and/or amino acids drives this blunted response. Pigs were delivered by caesarean section at preterm (PT, 103 d gestation) or at term (T, 112 d gestation) and fed parenterally for 4 d. On day 4, pigs were subject to euinsulinemic-euaminoacidemic-euglycemic (FAST), hyperinsulinemic-euaminoacidemic-euglycemic (INS), or euinsulinemic-hyperaminoacidemic-euglycemic (AA) clamps for 120 min, yielding six treatments: PT-FAST (n = 7), PT-INS (n = 9), PT-AA (n = 9), T-FAST (n = 8), T-INS (n = 9), and T-AA (n = 9). A flooding dose of L-[4-3H]Phe was injected into pigs 30 min before euthanasia. Birth weight and relative body weight gain were lower in PT than T pigs (P < 0.001). Plasma insulin concentration was increased from ~3 to ~100 µU/mL in INS compared to FAST and AA pigs (P < 0.001); plasma BCAA concentration was increased from ~250 to ~1,000 µmol/L in AA compared to FAST and INS pigs (P < 0.001). Despite achieving similar insulin and amino acid levels, longissimus dorsi AKT phosphorylation, mechanistic target of rapamycin (mTOR)·Rheb abundance, mTOR activation, and protein synthesis were lower in PT-INS than T-INS pigs (Table 1). Although amino-acid induced dissociation of Sestrin2 from GATOR2 was not affected by prematurity, mTOR·RagA abundance, mTOR·RagC abundance, mTOR activation, and protein synthesis were lower in PT-AA than T-AA pigs. The impaired capacity of premature skeletal muscle to respond to insulin or amino acids and promote protein synthesis likely contributes to reduced lean mass accretion. Research was supported by NIH and USDA.


Sign in / Sign up

Export Citation Format

Share Document