scholarly journals Time to Face Language: Embodied Mechanisms Underpin the Inception of Face-Related Meanings in the Human Brain

2020 ◽  
Vol 30 (11) ◽  
pp. 6051-6068 ◽  
Author(s):  
Adolfo M García ◽  
Eugenia Hesse ◽  
Agustina Birba ◽  
Federico Adolfi ◽  
Ezequiel Mikulan ◽  
...  

Abstract In construing meaning, the brain recruits multimodal (conceptual) systems and embodied (modality-specific) mechanisms. Yet, no consensus exists on how crucial the latter are for the inception of semantic distinctions. To address this issue, we combined electroencephalographic (EEG) and intracranial EEG (iEEG) to examine when nouns denoting facial body parts (FBPs) and nonFBPs are discriminated in face-processing and multimodal networks. First, FBP words increased N170 amplitude (a hallmark of early facial processing). Second, they triggered fast (~100 ms) activity boosts within the face-processing network, alongside later (~275 ms) effects in multimodal circuits. Third, iEEG recordings from face-processing hubs allowed decoding ~80% of items before 200 ms, while classification based on multimodal-network activity only surpassed ~70% after 250 ms. Finally, EEG and iEEG connectivity between both networks proved greater in early (0–200 ms) than later (200–400 ms) windows. Collectively, our findings indicate that, at least for some lexico-semantic categories, meaning is construed through fast reenactments of modality-specific experience.

2018 ◽  
Vol 30 (7) ◽  
pp. 963-972 ◽  
Author(s):  
Andrew D. Engell ◽  
Na Yeon Kim ◽  
Gregory McCarthy

Perception of faces has been shown to engage a domain-specific set of brain regions, including the occipital face area (OFA) and the fusiform face area (FFA). It is commonly held that the OFA is responsible for the detection of faces in the environment, whereas the FFA is responsible for processing the identity of the face. However, an alternative model posits that the FFA is responsible for face detection and subsequently recruits the OFA to analyze the face parts in the service of identification. An essential prediction of the former model is that the OFA is not sensitive to the arrangement of internal face parts. In the current fMRI study, we test the sensitivity of the OFA and FFA to the configuration of face parts. Participants were shown faces in which the internal parts were presented in a typical configuration (two eyes above a nose above a mouth) or in an atypical configuration (the locations of individual parts were shuffled within the face outline). Perception of the atypical faces evoked a significantly larger response than typical faces in the OFA and in a wide swath of the surrounding posterior occipitotemporal cortices. Surprisingly, typical faces did not evoke a significantly larger response than atypical faces anywhere in the brain, including the FFA (although some subthreshold differences were observed). We propose that face processing in the FFA results in inhibitory sculpting of activation in the OFA, which accounts for this region's weaker response to typical than to atypical configurations.


2019 ◽  
Vol 31 (10) ◽  
pp. 1573-1588 ◽  
Author(s):  
Eelke de Vries ◽  
Daniel Baldauf

We recorded magnetoencephalography using a neural entrainment paradigm with compound face stimuli that allowed for entraining the processing of various parts of a face (eyes, mouth) as well as changes in facial identity. Our magnetic response image-guided magnetoencephalography analyses revealed that different subnodes of the human face processing network were entrained differentially according to their functional specialization. Whereas the occipital face area was most responsive to the rate at which face parts (e.g., the mouth) changed, and face patches in the STS were mostly entrained by rhythmic changes in the eye region, the fusiform face area was the only subregion that was strongly entrained by the rhythmic changes in facial identity. Furthermore, top–down attention to the mouth, eyes, or identity of the face selectively modulated the neural processing in the respective area (i.e., occipital face area, STS, or fusiform face area), resembling behavioral cue validity effects observed in the participants' RT and detection rate data. Our results show the attentional weighting of the visual processing of different aspects and dimensions of a single face object, at various stages of the involved visual processing hierarchy.


Neuron ◽  
2011 ◽  
Vol 70 (2) ◽  
pp. 352-362 ◽  
Author(s):  
Shih-Pi Ku ◽  
Andreas S. Tolias ◽  
Nikos K. Logothetis ◽  
Jozien Goense

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244516
Author(s):  
Marina A. Pavlova ◽  
Valentina Romagnano ◽  
Andreas J. Fallgatter ◽  
Alexander N. Sokolov

Research on face sensitivity is of particular relevance during the rapidly evolving Covid-19 pandemic leading to social isolation, but also calling for intact interaction and sharing. Humans possess high sensitivity even to a coarse face scheme, seeing faces in non-face images where real faces do not exist. The advantage of non-face images is that single components do not trigger face processing. Here by implementing a novel set of Face-n-Thing images, we examined (i) how face tuning alters with changing display orientation, and (ii) whether it is affected by observers’ gender. Young females and males were presented with a set of Face-n-Thing images either with canonical upright orientation or inverted 180° in the image plane. Face impression was substantially impeded by display inversion. Furthermore, whereas with upright display orientation, no gender differences were found, with inversion, Face-n-Thing images elicited face impression in females significantly more often. The outcome sheds light on the origins of the face inversion effect in general. Moreover, the findings open a way for examination of face sensitivity and underwriting brain networks in neuropsychiatric conditions related to the current pandemic (such as depression and anxiety), most of which are gender/sex-specific.


Author(s):  
Giulia Corniani ◽  
Hannes P. Saal

The skin is our largest sensory organ and innervated by afferent fibers carrying tactile information to the spinal cord and onto the brain. The density with which different classes of tactile afferents innervate the skin is not constant but varies considerably across different body regions. However, precise estimates of innervation density are only available for some body parts, such as the hands, and estimates of the total number of tactile afferent fibers are inconsistent and incomplete. Here we reconcile different estimates and provide plausible ranges and best estimates for the number of different tactile fiber types innervating different regions of the skin, using evidence from dorsal root fiber counts, microneurography, histology, and psychophysics. We estimate that the skin across the whole body is innervated by approximately 230,000 tactile afferent fibers (plausible range: 200,000-270,000). 15% innervate the palmar skin of both hands and 19% the region surrounding the face and lips. Around 60% of all tactile fibers are slowly-adapting, while the rest are fastadapting. Innervation density correlates well with psychophysical spatial acuity across different body regions, and additionally, on hairy skin, with hair follicle density. Innervation density is also weakly correlated with the size of the cortical somatotopic representation, but cannot fully account for the magnification of the hands and the face.


2020 ◽  
Vol 124 (4) ◽  
pp. 1229-1240
Author(s):  
Giulia Corniani ◽  
Hannes P. Saal

The skin is our largest sensory organ and innervated by afferent fibers carrying tactile information to the spinal cord and onto the brain. The density with which different classes of tactile afferents innervate the skin is not constant but varies considerably across different body regions. However, precise estimates of innervation density are only available for some body parts, such as the hands, and estimates of the total number of tactile afferent fibers are inconsistent and incomplete. Here we reconcile different estimates and provide plausible ranges and best estimates for the number of different tactile fiber types innervating different regions of the skin, using evidence from dorsal root fiber counts, microneurography, histology, and psychophysics. We estimate that the skin across the whole body of young adults is innervated by ∼230,000 tactile afferent fibers (plausible range: 200,000–270,000), with a subsequent decrement of 5–8% every decade due to aging. Fifteen percent of fibers innervate the palmar skin of both hands and 19% the region surrounding the face and lips. Slowly and fast-adapting fibers are split roughly evenly, but this breakdown varies with skin region. Innervation density correlates well with psychophysical spatial acuity across different body regions, and, additionally, on hairy skin, with hair follicle density. Innervation density is also weakly correlated with the size of the cortical somatotopic representation but cannot fully account for the magnification of the hands and the face.


2019 ◽  
Author(s):  
Daniel A Handwerker ◽  
Geena Ianni ◽  
Benjamin Gutierrez ◽  
Vinai Roopchansingh ◽  
Javier Gonzalez-Castillo ◽  
...  

AbstractHumans process faces using a network of face-selective regions distributed across the brain. Neuropsychological patient studies demonstrate that focal damage to nodes in this network can impair face recognition, but such patients are rare. We approximated the effects of damage to the face network in neurologically normal human participants using thetaburst transcranial magnetic stimulation (TBS). Multi-echo functional magnetic resonance imaging (fMRI) resting-state data were collected pre- and post-TBS delivery over the face-selective right superior temporal sulcus (rpSTS), or a control site in the right motor cortex. Results showed that TBS delivered over the rpSTS reduced resting-state connectivity across the extended face-processing network. This connectivity reduction was observed not only between the rpSTS and other face-selective areas, but also between non-stimulated face-selective areas across the ventral, medial and lateral brain surfaces (e.g. between the right amygdala and bilateral fusiform face areas and occipital face areas). TBS delivered over the motor cortex did not produce significant changes in resting-state connectivity across the face-processing network. These results demonstrate that, even without task-induced fMRI signal changes, disrupting a single node in a brain network can decrease the functional connectivity between nodes in that network that have not been directly stimulated.Author SummaryHuman behavior is dependent on brain networks that perform different cognitive functions. We combined thetaburst transcranial magnetic stimulation (TBS) with resting-state fMRI to study the face processing network. Disruption of the face-selective right posterior superior temporal sulcus (rpSTS) reduced fMRI connectivity across the face network. This impairment in connectivity was observed not only between the rpSTS and other face-selective areas, but also between non-stimulated face-selective areas on the ventral and medial brain surfaces (e.g. between the right amygdala and bilateral fusiform face areas and occipital face areas). Thus, combined TBS/fMRI can be used to approximate and measure the effects of focal brain damage on brain networks, and suggests such an approach may be useful for mapping intrinsic network organization.Technical TermsTBS vs TMSTranscranial magnetic stimulation (TMS) is a method that induces current in neural tissue by using a rapidly changing magnetic field. The pattern of magnetic field changes can vary. Thetaburst TMS (TBS) is a type of TMS where the same stimulation pattern fluctuates at around a 5Hz cycle.Multi-echo fMRIDuring typical fMRI, protons are excited and there is a delay, the echo time, before data are collected. That delay is typically designed to result in a high contrast for blood oxygenation differences. In multi-echo fMRI, data are collected at several echo times each time protons are excited. This results in data that have different levels of contrast for blood oxygenation differences. This added information can be used to empirically decrease noise.Face networkA group of brain regions that show significant activity changes in response to visual face stimuli. While these regions have been defined using univariate analyses with task-based fMRI, they often significantly correlate with each other at rest. In this manuscript, the following regions were a priori defined as part of the face network: posterior superior temporal sulcus (pSTS), amygdala, fusiform face area (FFA), and occipital face area (OFA).Matrix based analysis (MBA)A recent approach that uses a Bayesian multilevel modeling framework to identify pairs of ROIs where a decrease in correlation magnitude was larger than expected along with a measure of statistical evidence. With this approach, correlations between all pairs of ROIs are assessed as part of a single model rather than many independent statistical tests.


Sign in / Sign up

Export Citation Format

Share Document