Emotion and Brain Oscillations: High Arousal is Associated with Decreases in Alpha- and Lower Beta-Band Power

2020 ◽  
Author(s):  
David Schubring ◽  
Harald T Schupp

Abstract The study of brain oscillations associated with emotional picture processing has revealed conflicting findings. Although many studies observed a decrease in power in the alpha- and lower beta band, some studies observed an increase. Accordingly, the main aim of the present research series was to further elucidate whether emotional stimulus processing is related to an increase or decrease in alpha/beta power. In Study 1, participants (N = 16) viewed briefly presented (150 ms) high-arousing erotic and low-arousing people pictures. Picture presentation included a passive viewing condition and an active picture categorization task. Study 2 (N = 16) replicated Study 1 with negative valence stimuli (mutilations). In Study 3 (N = 18), stimulus materials of Study 1 and 2 were used. The main finding is that high-arousing pictures (erotica and mutilations) are associated with a decrease of power in the alpha/beta band across studies and task conditions. The effect peaked in occipitoparietal sensors between 400 and 800 ms after stimulus onset. Furthermore, a late (>1000 ms) alpha/beta power increase to mutilation pictures was observed, possibly reflecting top–down inhibitory control processes. Overall, these findings suggest that brain oscillations in the alpha/beta-band may serve as a useful measure of emotional stimulus processing.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Edan Daniel ◽  
Thomas Meindertsma ◽  
Ayelet Arazi ◽  
Tobias H. Donner ◽  
Ilan Dinstein

AbstractNeural activity fluctuates over time, creating considerable variability across trials. This trial-by-trial neural variability is dramatically reduced (“quenched”) after the presentation of sensory stimuli. Likewise, the power of neural oscillations, primarily in the alpha-beta band, is also reduced after stimulus onset. Despite their similarity, these phenomena have so far been studied and discussed independently. We hypothesized that the two phenomena are tightly coupled in electrophysiological recordings of large cortical neural populations. To test this, we examined magnetoencephalography (MEG) recordings of healthy subjects viewing repeated presentations of a visual stimulus. The timing, amplitude, and spatial topography of variability-quenching and power-suppression were remarkably similar. Neural variability quenching was eliminated by excluding the alpha-beta band from the recordings, but not by excluding other frequency-bands. Moreover, individual magnitudes of alpha-beta band-power explained 86% of between-subject differences in variability quenching. An alternative mechanism that may generate variability quenching is increased phase alignment across trials. However, changes in inter-trial-phase-coherence (ITPC) exhibited distinct timing and no correlations with the magnitude of variability quenching in individual participants. These results reveal that neural variability quenching is tightly coupled with stimulus-induced changes in the power of alpha-beta band oscillations, associating two phenomena that have so far been studied in isolation.


2020 ◽  
Author(s):  
Mehdi Senoussi ◽  
Rufin VanRullen ◽  
Leila Reddy

AbstractBeing able to predict future events in learned sequences is a fundamental cognitive ability. Successful behavior requires the brain to not only anticipate an upcoming event, but to also continue to keep track of the sequence in case of eventual disruptions, (e.g., when a predicted event does not occur). However, the precise neural mechanisms supporting such processes remain unknown. Here, using multivariate pattern classification based on electroencephalography (EEG) activity and time-frequency amplitude, we show that the visual system represents upcoming expected stimuli during a sequence-learning task. Stimulus-evoked neural representations were reinstated prior to expected stimulus onset, and when an anticipated stimulus was unexpectedly withheld, suggesting proactive reinstatement of sensory templates. Importantly, stimulus representation of the absent stimulus co-occurred with an emerging representation of the following stimulus in the sequence, showing that the brain actively maintained sequence order even when the sequence was perturbed. Finally, selective activity was evident in the alpha-beta band (9-20 Hz) amplitude topographies, confirming the role of alpha-beta oscillations in carrying information about the nature of sensory expectations. These results show that the brain dynamically implements anticipatory mechanisms that reinstate sensory representations, and that allow us to make predictions about events further in the future.


2001 ◽  
Vol 15 (4) ◽  
pp. 256-274 ◽  
Author(s):  
Caterina Pesce ◽  
Rainer Bösel

Abstract In the present study we explored the focusing of visuospatial attention in subjects practicing and not practicing activities with high attentional demands. Similar to the studies of Castiello and Umiltà (e. g., 1990) , our experimental procedure was a variation of Posner's (1980) basic paradigm for exploring covert orienting of visuospatial attention. In a simple RT-task, a peripheral cue of varying size was presented unilaterally or bilaterally from a central fixation point and followed by a target at different stimulus-onset-asynchronies (SOAs). The target could occur validly inside the cue or invalidly outside the cue with varying spatial relation to its boundary. Event-related brain potentials (ERPs) and reaction times (RTs) were recorded to target stimuli under the different task conditions. RT and ERP findings showed converging aspects as well as dissociations. Electrophysiological results revealed an amplitude modulation of the ERPs in the early and late Nd time interval at both anterior and posterior scalp sites, which seems to be related to the effects of peripheral informative cues as well as to the attentional expertise. Results were: (1) shorter latency effects confirm the positive-going amplitude enhancement elicited by unilateral peripheral cues and strengthen the criticism against the neutrality of spatially nonpredictive peripheral cueing of all possible target locations which is often presumed in behavioral studies. (2) Longer latency effects show that subjects with attentional expertise modulate the distribution of the attentional resources in the visual space differently than nonexperienced subjects. Skilled practice may lead to minimizing attentional costs by automatizing the use of a span of attention that is adapted to the most frequent task demands and endogenously increases the allocation of resources to cope with less usual attending conditions.


2021 ◽  
Vol 153 ◽  
pp. 107755
Author(s):  
Benjamin J. Griffiths ◽  
María Carmen Martín-Buro ◽  
Bernhard P. Staresina ◽  
Simon Hanslmayr ◽  
Tobias Staudigl

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2461
Author(s):  
Alexander Kuc ◽  
Vadim V. Grubov ◽  
Vladimir A. Maksimenko ◽  
Natalia Shusharina ◽  
Alexander N. Pisarchik ◽  
...  

Perceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task. We observe that parietal and temporal beta-band wavelet power monotonically increases throughout the perceptual process. Ambiguity induces high frontal beta-band power at 0.3–0.6 s post-stimulus onset. It may reflect the increasing reliance on the top-down mechanisms to facilitate accumulating decision-relevant sensory features. Finally, this study analyzes the perceptual process using mixed within-trial and within-subject design. First, we found significant percept-related changes in each subject and then test their significance at the group level. Thus, observed beta-band biomarkers are pronounced in single EEG trials and may serve as control commands for brain-computer interface (BCI).


2019 ◽  
Author(s):  
Benjamin J. Griffiths ◽  
Stephen D. Mayhew ◽  
Karen J. Mullinger ◽  
João Jorge ◽  
Ian Charest ◽  
...  

AbstractMassed synchronised neuronal firing is detrimental to information processing. When networks of task-irrelevant neurons fire in unison, they mask the signal generated by task-critical neurons. On a macroscopic level, mass synchronisation of these neurons can contribute to the ubiquitous alpha/beta (8-30Hz) oscillations. Reductions in the amplitude of these oscillations, therefore, may reflect a boost in the processing of high-fidelity information within the cortex. Here, we test this hypothesis. Twenty-one participants completed an associative memory task while undergoing simultaneous EEG-fMRI recordings. Using representational similarity analysis, we quantified the amount of stimulus-specific information represented within the BOLD signal on every trial. When correlating this metric with concurrently-recorded alpha/beta power, we found a significant negative correlation which indicated that as alpha/beta power decreased, our metric of stimulus-specific information increased. This effect generalised across cognitive tasks, as the negative relationship could be observed during visual perception and episodic memory retrieval. Further analysis revealed that this effect could be better explained by alpha/beta power decreases providing favourable conditions for information processing, rather than directly representing stimulus-specific information. Together, these results indicate that alpha/beta power decreases parametrically track the fidelity of both externally-presented and internally-generated stimulus-specific information represented within the cortex.


2018 ◽  
Vol 115 (5) ◽  
pp. 1117-1122 ◽  
Author(s):  
André M. Bastos ◽  
Roman Loonis ◽  
Simon Kornblith ◽  
Mikael Lundqvist ◽  
Earl K. Miller

All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50–250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4–22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM.


2021 ◽  
Author(s):  
Andrea Biondi ◽  
Lorenzo Rocchi ◽  
Viviana Santoro ◽  
Gregory Beatch ◽  
Pierre Rossini ◽  
...  

Abstract The frequency analysis of electroencephalographic (EEG) activity, either spontaneous or evoked by transcranial magnetic stimulation (TMS-EEG), is a powerful tool to investigate changes in brain activity and excitability following the administration of antiepileptic drugs (AEDs). However, a systematic evaluation of the effect of AEDs on spontaneous and TMS-induced brain oscillations has not yet been provided. We studied the effects of lamotrigine, levetiracetam, and of a novel potassium channel opener (XEN1101) on TMS-induced and spontaneous brain oscillations in a group of healthy volunteers. Levetiracetam suppressed TMS-induced theta, alpha and beta power, whereas lamotrigine increased TMS-induced alpha power. XEN1101 decreased TMS-induced delta, theta and beta power. Resting-state EEG showed a decrease of theta band power after lamotrigine intake. Levetiracetam increased theta, beta and gamma power, while XEN1101 produced an increase of delta, theta, beta and gamma power. Different AEDs induce specific patterns of power changes in spontaneous and TMS-induced brain oscillations. Spontaneous and TMS-induced cortical oscillations represent a powerful tool to characterize the effect of AEDs on in vivo brain activity. Spectral fingerprints of specific AEDs should be further investigated to provide robust and objective biomarkers of biological effect in human clinical trials.


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Ilknur Telkes ◽  
Jennifer Durphy ◽  
Octavian Adam ◽  
Nataly Raviv ◽  
Julie G Pilitsis

Abstract INTRODUCTION One of the biggest limitations of deep brain stimulation (DBS) therapy is the stimulation induced side effects due to restricted size of functional areas in subthalamic nucleus (STN) and the proximity of structures. The segmented DBS lead technology aims to address this problem by delivering more selected, focal modulation via smaller, directional contacts. However, the DBS programming becomes more complex and time-consuming for clinical feasibility. Here in this pilot study, we investigated the spectral power distribution of directional local field potentials (LFPs) in STN and their relationship to motor symptoms of Parkinson disease (PD). METHODS We recorded 8-channel intraoperative LFPs in 9 PD patients at resting and during stimulation OFF. Power-frequency spectra were computed for all individual contacts and then grouped according to which anatomical directions they are facing. Beta (13-20 Hz/20-35 Hz) and alpha (7-12 Hz) band powers were calculated and their correlation to preoperative UPDRS-3 scores (51.7 ± 21.9 d before the DBS surgery) and the clinical programming were evaluated. RESULTS The average depth-frequency maps demonstrated different spectral dynamics across anterior, medial, and lateral directions. Patients with severe tremor compared to nontremor subjects showed higher beta power in anterior and lateral directions. Beta band power were positively correlated with the tremor severity and significantly correlated with clinical stimulation amplitude (mA) in anterior direction (P < .05). Correlation analysis between beta power and the other UPDRS-3 items such as bradykinesia/rigidity or postural instability and gait disturbance did not show clear trends towards a direction. CONCLUSION Given that testing all possible combinations of contact pairs and stimulation parameters is not feasible in a single clinic visit, spatio-spectral dynamics obtained from intraoperative recordings of LFPs might be used as an initial marker to select optimal contact (s). LFPs carry pathological signatures of PD and they might provide a functional use to predict optimal stimulation parameters in future. These features as well as higher frequency and cross-coupling dynamics of LFPs need to be studied in detail with larger subject populations.


Sign in / Sign up

Export Citation Format

Share Document