scholarly journals Sex and Genotype Differences in Odor Detection in the 3×Tg-AD and 5XFAD Mouse Models of Alzheimer’s Disease at 6 Months of Age

2016 ◽  
Vol 41 (5) ◽  
pp. 433-440 ◽  
Author(s):  
Kyle M. Roddick ◽  
Amelia D. Roberts ◽  
Heather M. Schellinck ◽  
Richard E. Brown
2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Christoph Preuss ◽  
◽  
Ravi Pandey ◽  
Erin Piazza ◽  
Alexander Fine ◽  
...  

Abstract Background Late-onset Alzheimer’s disease (LOAD) is the most common form of dementia worldwide. To date, animal models of Alzheimer’s have focused on rare familial mutations, due to a lack of frank neuropathology from models based on common disease genes. Recent multi-cohort studies of postmortem human brain transcriptomes have identified a set of 30 gene co-expression modules associated with LOAD, providing a molecular catalog of relevant endophenotypes. Results This resource enables precise gene-based alignment between new animal models and human molecular signatures of disease. Here, we describe a new resource to efficiently screen mouse models for LOAD relevance. A new NanoString nCounter® Mouse AD panel was designed to correlate key human disease processes and pathways with mRNA from mouse brains. Analysis of the 5xFAD mouse, a widely used amyloid pathology model, and three mouse models based on LOAD genetics carrying APOE4 and TREM2*R47H alleles demonstrated overlaps with distinct human AD modules that, in turn, were functionally enriched in key disease-associated pathways. Comprehensive comparison with full transcriptome data from same-sample RNA-Seq showed strong correlation between gene expression changes independent of experimental platform. Conclusions Taken together, we show that the nCounter Mouse AD panel offers a rapid, cost-effective and highly reproducible approach to assess disease relevance of potential LOAD mouse models.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8328
Author(s):  
Øyvind P. Haugen ◽  
Evan M. Vallenari ◽  
Imen Belhaj ◽  
Milada Cvancarova Småstuen ◽  
Jon Storm-Mathisen ◽  
...  

Lactate treatment has shown a therapeutic potential for several neurological diseases, including Alzheimer’s disease. In order to optimize the administration of lactate for studies in mouse models, we compared blood lactate dynamics after intraperitoneal (IP) and subcutaneous (SC) injections. We used the 5xFAD mouse model for familial Alzheimer’s disease and performed the experiments in both awake and anaesthetized mice. Blood glucose was used as an indication of the hepatic conversion of lactate. In awake mice, both injection routes resulted in high blood lactate levels, mimicking levels reached during high-intensity training. In anaesthetized mice, SC injections resulted in significantly lower lactate levels compared to IP injections. Interestingly, we observed that awake males had significantly higher lactate levels than awake females, while the opposite sex difference was observed during anaesthesia. We did not find any significant difference between transgenic and wild-type mice and therefore believe that our results can be generalized to other mouse models. These results should be considered when planning experiments using lactate treatment in mice.


2016 ◽  
Vol 12 ◽  
pp. P954-P954
Author(s):  
Vera Niederkofler ◽  
Magdalena Temmel ◽  
Karin Lanegger ◽  
Joerg Neddens ◽  
Ewald Auer ◽  
...  

2013 ◽  
Vol 106 ◽  
pp. 57-67 ◽  
Author(s):  
Chun-Ming Wang ◽  
Ming-Yan Liu ◽  
Fang Wang ◽  
Min-Jie Wei ◽  
Shuang Wang ◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Jeremiah K. H. Lim ◽  
Qiao-Xin Li ◽  
Zheng He ◽  
Algis J. Vingrys ◽  
Holly R. Chinnery ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document