Development of an HPLC Method for the Determination of Meropenem/Vaborbactam in Biological and Aqueous Matrixes

2020 ◽  
Vol 58 (8) ◽  
pp. 726-730
Author(s):  
Christina A Sutherland ◽  
David P Nicolau

Abstract A HPLC method was developed and validated to analyze meropenem and vaborbactam simultaneously in murine plasma and saline matrixes. A 60-μL volume of extracted sample was injected onto a 5-μm BDS Phenyl-Hypersil C18 reversed-phase column and analyzed with a UV detector set at 298 nm for the first 4.9 min and switched to 240 nm. The mobile phase contained a mixture of methanol and 25-mM sodium phosphate buffer set at a flow rate of 1.0 mL/min for the 16 min run time. Cefuroxime was used as the internal standard. The standard curves were linear over a range of 0.25–50 μg/mL. The precision and accuracy for 0.25 μg/mL (LLQ) in plasma for both compounds were <4.8% and >98.9%, respectively. Interday and intraday precision and accuracy for all QC plasma samples for both compounds were <6.2% and >95.7%, respectively. This methodology details a reproducible assay for both compounds using a single extraction with good accuracy and precision.

INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (11) ◽  
pp. 46-50
Author(s):  
Z. G Khan ◽  
◽  
S. S. Patil ◽  
P. K. Deshmukh ◽  
P. O. Patil

Novel, isocratic reversed phase high performance liquid chromatography method was developed and validated for the determination of enzalutamide (EZA) in bulk drug and pharmaceutical formulation. Efficient separation was achieved on PrincetonSPHER C18 100A, 5μ (250×4.6 mm) under the isocratic mode of elution using acetonitrile: water (80:20) % V/V as a mobile phase pumped in to the column at flow rate 1.0 mL/min. The effluent was monitored at 237.0 nm using UV detector. EZA was eluted in the given mobile phase at retention time (tR) of 3.2 minutes. The standard calibration curve was linear over the concentration range 10 - 60 μg/mL with correlation coefficient 0.997. The method was validated for accuracy, precision, sensitivity, robustness, ruggedness and all the resulting data treated statistically. The system suitability parameters like retention time, theoretical plates, tailing factor, capacity factor were found within the limit.


1997 ◽  
Vol 43 (8) ◽  
pp. 1386-1391 ◽  
Author(s):  
Ursula Turpeinen ◽  
Helene Markkanen ◽  
Matti Välimäki ◽  
Ulf-Håkan Stenman

Abstract We here report a reversed-phase HPLC method for the determination of free cortisol in human urine, using methylprednisolone as the internal standard. Before chromatography, samples were extracted with a C18 solid-phase extraction column and the steroids were separated on a LiChrospher 100 C18 column with a mobile phase of methanol/acetonitrile/water (43/3/54 by vol). Linearity, precision, and accuracy of the method were established. The detection limit was 10 pmol of cortisol, and total CVs were <8%. With various solid-phase extraction columns the recovery of cortisol was 36–97%; recovery of the internal standard was 43–85%. Study of interference by 6 other steroids and metabolites and 24 drugs showed that carbamazepine and digoxin partly overlapped with cortisol, but this interference could be reduced by modification of the mobile phase. The HPLC method was compared with an RIA and an automated immunoassay method. The results obtained by HPLC averaged 40% of the RIA values.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yan-yun Yang ◽  
Liang Xu ◽  
Song-yao Hao ◽  
Yan Li ◽  
Zhen-Qiu Zhang

A sensitive HPLC method was developed for the quantitative determination of isoliquiritin apioside (ILA) and isoliquiritin (IL) in rat plasma. After protein precipitation with acetonitrile, chloroform was used to separate lipid-soluble impurities from the plasma samples and remove acetonitrile. A chromatography was carried out on Diamonsil C18 (150×4.6 mm; 5 μm) analytical column, using a mobile phase consisting of water (containing phosphoric acid 0.1%, v/v); acetonitrile (72 : 28, v/v) at a flow rate of 1.0 mL/min. The wavelength-switching technology was performed to determine ILA and IL at 360 nm and wogonoside (internal standard, IS) at 276 nm. The calibration curves of ILA and IL were fairly linear over the concentration ranges of 0.060–3.84 μg/mL (r=0.9954) and 0.075–4.80 μg/mL (r=0.9968), respectively. The average extract recoveries of ILA, IL, and IS were all over 80%. The precision and accuracy for all concentrations of quality controls and standards were within 15%. The lower limit of quantification (LLOQ) was 0.060 μg/mL for ILA and 0.075 μg/mL for IL. The method was used in pharmacokinetic study after an oral administration of Zhigancao extract to rats.


2014 ◽  
Vol 27 (4) ◽  
pp. 258-262
Author(s):  
Beata Paw

Abstract Simple, sensitive, precise and accurate HPLC, densitometric and videodensitometric methods for determination of lamotrigine in tablet forms were developed and validated. The HPLC method was carried out using a Symmetry C8 column and a mobile phase acetonitrile-phosphate buffer pH 2.80 (25:75, v/v), with a flow rate of 1 mL/min, and UV detection at 210 nm. Ethosuximide was used as the internal standard. Densitometric and videodensitometric analysis was performed on silica gel 60 F254 plates, in horizontal chambers, with methanol-chloroform-ammonia (25%) 1.5:7.5:1, (v/v) as mobile phase. Densitometric detection was performed at 225 nm and at 315 nm, and videodeoscanning at 254 nm. Calibration plots were constructed in the range 0.5-10 μg/spot, with good correlation coefficients r > 0.99 for both methods. The precision and accuracy of all elaborated methods were compared. Finally, the developed methods were applied for the quality control of lamotrigine tablets.


2010 ◽  
Vol 13 (2) ◽  
pp. 128 ◽  
Author(s):  
Fakhreddin Jamali ◽  
Alyaa Ibrahim

Purpose. An improved HPLC method with fluorescence detection was developed and validated for determination of glucosamine in human and rat biological samples. Method. Aliquot of 0.1 mL plasma was spiked with mannosamine HCl as the internal standard (IS); proteins were precipitated with acetonitrile; the clear layer was derivatized with 9-fluorenylmethyl chloroformate (8 mM/acetonitrile) in presence of borate 0.2 M buffer at 30o C for 30 min. The excess derivatizing agent was removed with 1-aminoadamantane HCl (300 mM in acetonitrile-water 1:1). Chromatographic separation was achieved on a C18 (100mm X 4.6 mm, id 3μm) reversed phase column using 0.1% acetic acid/acetoniltrile gradient mobile phase at 1 mL/min flow rate. Glucosamine was determined in the plasma of a human and rats and also in rat urine. Results. The analytes were detected at excitation and emission wavelengths of 263 and 315 nm, respectively. The assay was linear over the range of 0.05-20 µg/mL with a typical correlation coefficient of 0.999 and intra-day and inter-day coefficient of variation of


2018 ◽  
Vol 8 (4) ◽  
pp. 42-47
Author(s):  
Tien Nguyen Huu ◽  
Tram Le Thi Bao ◽  
Ngoc Nguyen Thi Nhu ◽  
Thang Phan Phuoc ◽  
Khan Nguyen Viet

Background: Curcumin is a major ingredient in turmeric (Curcuma longa L., Zingiberaceae), which has important activities such as anti-tumor, anti-inflammatory, antioxidant, anti-ischemia, protection of gastric mucosa etc,. Curcumin can be considered as a biological marker of turmeric and turmeric products. Objectives: Developing an HPLC method for quantification of curcumin in turmeric powder and turmeric - honey ball pills; applying this method for products on the market. Materials and methods: turmeric powder and turmeric - honey ball pills collected in Thua Thien Hue province. After optimization process, the method was validated and applied to evaluate the content of curcumin. Results: The chromatography analysis was performed with: Zorbaz Eclipse XDB-C18 (150 × 4.6 nm; 5 µm); Mobile phase: acetonitril: 2% acetic acid (45:55), Flow rate was kept constant at 1.0 ml/min; Detector PDA (420 nm). The method was validated for the HPLC system compatibility, specificity, linearity range, precision and accuracy; the recovery greater than 98%. Conclusion: The developed HPLC method can determine curcumin in turmeric powder and turmeric - honey ball pills. Key words: Curcumin, turmeric powder, turmeric-honey ball pills, quantitative determination, HPLC


2011 ◽  
Vol 8 (1) ◽  
pp. 340-346 ◽  
Author(s):  
Rajesh M. Kashid ◽  
Santosh G. Singh ◽  
Shrawan Singh

A reversed phase HPLC method that allows the separation and simultaneous determination of the preservatives methyl paraben (M.P.) and propyl paraben (P.P.) is described. The separations were effected by using an initial mobile phase of water: acetonitrile (50:50) on Inertsil C18 to elute P.P. and M.P. The detector wavelength was set at 205 nm. Under these conditions, separation of the two components was achieved in less than 10 min. Analytical characteristics of the separation such as precision, specificity, linear range and reproducibility were evaluated. The developed method was applied for the determination of preservative M.P. and P.P. at concentration of 0.01 mg/mL and 0.1 mg/mL respectively. The method was successfully used for determining both compounds in sucralfate suspension.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (07) ◽  
pp. 59-68
Author(s):  
H Mahajan ◽  
S Savale ◽  
P Nerkar ◽  

The present study was aimed at developing a Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) method for simultaneous determination of curcumin (CRM) and gefitinib (GFT) in bulk, plasma and brain homogenate. hydrochlorothiazide was used as an internal standard (IS). A new simple, rapid, selective, precise and accurate RP-HPLC method has been developed. The separation was achieved by using C-18 column (Qualisil BDS C18, 250 mm x 4.6 mm I.D.) coupled with a guard column of silica, mobile phase consisted of acetonitrile: water with 0.1% formic acid (30:70 v/v). The flow rate was 0.2 ml/min and the drug was detected using PDA detector at the wavelength of 242 nm. The experimental conditions, including the diluting solvent, mobile phase composition, column saturation and flow rate, were optimised to provide high-resolution and reproducible peaks. The method was developed and tested for linearity range of 10-60 μg/mL for bulk analysis and 200-800 ng/mL for plasma and brain homogenate. The developed method was validated as per ICH guidelines, in terms of linearity, application of the proposed method to bulk sample, recovery, precision, repeatability, ruggedness, sensitivity (LOD and LOQ) and robustness and stability study (short and long-term stabilities, freeze/thaw stability, post-preparative). The low value of % RSD showed that the method was precise within the acceptance limit of 2%. The developed method was successfully applied for the analysis of the drug in bulk as well as various marketed formulation and drug in plasma and brain distribution studies.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (03) ◽  
pp. 44-51
Author(s):  
B. Sabbagh ◽  
B. V. S. Lokesh ◽  
G. A. Akouwah ◽  

Two methods were developed for the determination of dapagliflozin (DAPA) in pure form and in tablets. The procedure utilized was UV-Visible Spectroscopy and RP-HPLC with PDA detector to quantify DAPA in bulk and tablets. The sensitive linear range was identified for both methods within 0.5-5.0μg/mL. The linear regression analysis was identified for both methods with correlation coefficient(r)>0.99. The LOD and LOQ values were found to be 0.05 μg/mL and 0.5 μg/mL for the method by UV-Spectroscopy. The molar absorptivity (ε) was calculated as 1.27 X 105 L.mol-1cm-1. The RP-HPLC method produced LOD and LOQ values of 1.0 ng/mL and 0.5 μg/mL. Both methods were simple, precise, reproducible to quantify the amount of unknown in bulk as well as in tablets and estimated accurately within the range of 100.0±0.5%. Statistical analysis was performed on the data obtained. There was no significant difference between the developed and reported methods with p>0.05. Both methods can be applied for routine analysis of DAPA in bulk and tablets with good accuracy and precision.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Suying Ma ◽  
Haixia Lv ◽  
Xiaojun Shang

A high performance liquid chromatographic (HPLC) method with UV detector for the determination of dyclonine hydrochloride and a gas chromatography (GC) method with flame ionization detector (FID) for the determination of camphor and menthol in lotion were developed. The developed HPLC method involved using a SinoChoom ODS-BP C18reversed-phase column (5 μm, 4.6 mm × 200 mm) and mobile phase consisting of acetonitrile : water : triethylamine in a ratio of 45 : 55 : 1.0; pH was adjusted to 3.5 with glacial acetic acid. The developed GC method for determination of camphor and menthol involved using an Agilent 19091J-413 capillary chromatographic column (30 m × 320 μm × 0.25 μm). The two methods were validated according to official compendia guidelines. The calibration of dyclonine hydrochloride for HPLC method was linear over the range of 20–200 μg/mL. The retention time was found at 6.0 min for dyclonine hydrochloride. The calibration of camphor and menthol of GC method was linear over the range of 10–2000 μg/mL. The retention time was found at 2.9 min for camphor and 3.05 min for menthol. The proposed HPLC and GC methods were proved to be suitable for the determination of dyclonine hydrochloride, camphor, and menthol in lotion.


Sign in / Sign up

Export Citation Format

Share Document