bulk analysis
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 51)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
M. González-Cabrera ◽  
K. Wieland ◽  
E. Eitenberger ◽  
A. Bleier ◽  
L. Brunnbauer ◽  
...  

AbstractThis work presents a multisensor hyperspectral approach for the characterization of ultramarine blue, a valuable historical pigment, at the microscopic scale combining the information of four analytical techniques at the elemental and molecular levels. The hyperspectral images collected were combined in a single hypercube, where the pixels of the various spectral components are aligned on top of each other. Selected spectral descriptors have been defined to reduce data dimensionality before applying unsupervised chemometric data analysis approaches. Lazurite, responsible for the blue color of the pigment, was detected as the major mineral phase present in synthetic and good quality pigments. Impurities like pyrite were detected in lower quality samples, although the clear identification of other mineral phases with silicate basis was more difficult. There is no correlation between the spatial distribution of the bands arising in the Raman spectra of natural samples in the region 1200–1850 cm−1 and any of the transition metals or rare earth elements (REE). With this information, the previous hypothesis (based on bulk analysis) attributing these bands to luminescence emissions due to impurities of these elements must be revised. We propose the consideration of CO2 molecules trapped in the cages of the aluminosilicate structure of sodalite-type. Additionally, correlation between certain Raman features and the combined presence of Ca, P, and REE, in particular Nd, was detected for the lowest quality pigment. Our results highlight the usefulness of fusing chemical images obtained via different imaging techniques to obtain relevant information on chemical structure and properties.


2021 ◽  
Vol 21 (23) ◽  
pp. 17953-17967
Author(s):  
Qi En Zhong ◽  
Chunlei Cheng ◽  
Zaihua Wang ◽  
Lei Li ◽  
Mei Li ◽  
...  

Abstract. The mixing states of particulate amines with different chemical components are of great significance in studying the formation and evolution processes of amine-containing particles. In this work, the mixing states of single particles containing trimethylamine (TMA) and diethylamine (DEA) are investigated using a high-performance single-particle aerosol mass spectrometer located in Nanjing, China, in September 2019. TMA- and DEA-containing particles accounted for 22.8 % and 5.5 % of the total detected single particles, respectively. The particle count and abundance of the TMA-containing particles in the total particles notably increased with enhancement of ambient relative humidity (RH), while the DEA-containing particles showed no increase under a high RH. This result suggested the important role of RH in the formation of particulate TMA. Significant enrichments of secondary organic species, including 43C2H3O+, 26CN−, 42CNO−, 73C3H5O2-, and 89HC2O4-, were found in DEA-containing particles, indicating that DEA-containing particles were closely associated with the aging of secondary organics. The differential mass spectra of the DEA-containing particles showed a much higher abundance of nitrate and organic nitrogen species during the nighttime than during the daytime, which suggested that the nighttime production of particulate DEA might be associated with reactions of gaseous DEA with HNO3 and/or particulate nitrate. In the daytime, the decrease in DEA-containing particles was observed with the enrichment of oxalate and glyoxylate, which suggested a substantial impact of photochemistry on the aging process of DEA-containing particles. Furthermore, more than 80 % of TMA- and DEA-containing particles internally mixed with nitrate, while the abundance of sulfate was higher in the DEA-containing particles (79.3 %) than in the TMA-containing particles (55.3 %). This suggested that particulate DEA existed both as nitrate and sulfate aminium salts, while the particulate TMA primarily presented as nitrate aminium salt. The different mixing states of the TMA- and DEA-containing particles suggested their different formation processes and various influencing factors, which are difficult to investigate using bulk analysis. These results provide insights into the discriminated fates of organics during the evolution process in aerosols, which helps to illustrate the behavior of secondary organic aerosols.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bai Linnan ◽  
Wang Yanzhe ◽  
Zhang Ling ◽  
Liu Yuyuan ◽  
Chen Sijia ◽  
...  

The in situ metabolic profiling of the kidney is crucial to investigate the complex metabolic reprogramming underlying diabetic kidney disease (DKD) and to allow exploration of potential metabolic targets to improve kidney function. However, as the kidney is a highly heterogeneous organ, traditional metabolomic methods based on bulk analysis that produce an averaged measurement are inadequate. Herein, we employed an in situ metabolomics approach to discover alternations of DKD-associated metabolites and metabolic pathways. A series of histology-specific metabolic disturbances were discovered in situ using airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI–MSI). In combination with integrated metabolomics analysis, five dysfunctional metabolic pathways were identified and located in the kidneys of type-2 DKD mice simultaneously for the first time, including taurine metabolism, arginine and proline metabolism, histidine metabolism, biosynthesis of unsaturated fatty acids, and fatty acid degradation pathways. As crucial nodes of metabolic pathways, five dysregulated rate-limiting enzymes related to altered metabolic pathways were further identified. These findings reveal alternations from metabolites to enzymes at the molecular level in the progression of DKD and provide insights into DKD-associated metabolic reprogramming.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sehrish Iftikhar ◽  
Aurélie Vigne ◽  
Julia Elisa Sepulveda-Diaz

AbstractFungicides are extensively used in agriculture to control fungal pathogens which are responsible for significant economic impact on plant yield and quality. The conventional antifungal screening techniques, such as water agar and 96-well plates, are based on laborious protocols and bulk analysis, restricting the analysis at the single spore level and are time consuming. In this study, we present a droplet-based microfluidic platform that enables antifungal analysis of single spores of filamentous fungus Alternaria alternata. A droplet-based viability assay was developed, allowing the germination and hyphal growth of single A. alternata spores within droplets. The viability was demonstrated over a period of 24 h and the antifungal screening was achieved using Kunshi/Tezuma as antifungal agent. The efficacy results of the droplet-based antifungal analysis were compared and validated with the results obtained from conventional protocols. The percentage inhibitions assessed by the droplet-based platform were equivalent with those obtained by the other two methods, and the Pearson correlation analysis showed high correlation between the three assays. Taken together, this droplet-based microfluidic platform provides a wide range of potential applications for the analysis of fungicide resistance development as well as combinatorial screening of other antimicrobial agents and even antagonistic fungi.


2021 ◽  
Vol 13 ◽  
Author(s):  
Anna Sandebring-Matton ◽  
Michael Axenhus ◽  
Nenad Bogdanovic ◽  
Bengt Winblad ◽  
Sophia Schedin-Weiss ◽  
...  

Novel insights on proteins involved in Alzheimer’s disease (AD) are needed. Since multiple cell types and matrix components are altered in AD, bulk analysis of brain tissue maybe difficult to interpret. In the current study, we isolated pyramidal cells from the cornu ammonis 1 (CA1) region of the hippocampus from five AD and five neurologically healthy donors using laser capture microdissection (LCM). The samples were analyzed by proteomics using 18O-labeled internal standard and nano-high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) for relative quantification. Fold change between AD and control was calculated for the proteins that were identified in at least two individual proteomes from each group. From the 10 cases analyzed, 62 proteins were identified in at least two AD cases and two control cases. Creatine kinase B-type (CKB), 14-3-3-γ, and heat shock cognate 71 (Hsc71), which have not been extensively studied in the context of the human AD brain previously, were selected for further studies by immunohistochemistry (IHC). In hippocampus, semi-quantitative measures of IHC staining of the three proteins confirmed the findings from our proteomic analysis. Studies of the same proteins in the frontal cortex revealed that the alterations remained for CKB and 14-3-3-γ but not for Hsc71. Protein upregulation in CA1 neurons of final stage AD is either a result of detrimental, pathological effects, or from cell-specific protective response mechanisms in surviving neurons. Based on previous findings from experimental studies, CKB and Hsc71 likely exhibit protective effects, whereas 14-3-3-γ may represent a detrimental pathway. These new players could reflect pathways of importance for the development of new therapeutic strategies.


Author(s):  
Amy L. Kimble ◽  
Jordan Silva ◽  
Omar M. Omar ◽  
Melissa Murphy ◽  
Jessica A. Hensel ◽  
...  

AbstractEndothelial cells are important contributors to brain development, physiology, and disease. Although RNA sequencing has contributed to the understanding of brain endothelial cell diversity, bulk analysis and single-cell approaches have relied on fresh tissue digestion protocols for the isolation of single endothelial cells and flow cytometry-based sorting on surface markers or transgene expression. These approaches are limited in the analysis of the endothelium in human brain tissues, where fresh samples are difficult to obtain. Here, we developed an approach to examine endothelial RNA expression by using an endothelial-specific marker to isolate nuclei from abundant archived frozen brain tissues. We show that this approach rapidly and reliably extracts endothelial nuclei from frozen mouse brain samples, and importantly, from archived frozen human brain tissues. Furthermore, isolated RNA transcript levels are closely correlated with expression in whole cells from tissue digestion protocols and are enriched in endothelial markers and depleted of markers of other brain cell types. As high-quality RNA transcripts could be obtained from as few as 100 nuclei in archived frozen human brain tissues, we predict that this approach should be useful for both bulk analysis of endothelial RNA transcripts in human brain tissues as well as single-cell analysis of endothelial sub-populations.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2219-2219
Author(s):  
Rebecca Boiarsky ◽  
Nicholas Haradhvala ◽  
Romanos Sklavenitis-Pistofidis ◽  
Tarek H Mouhieddine ◽  
Jean-Baptiste Alberge ◽  
...  

Abstract Our understanding of disease progression in multiple myeloma (MM) and its precursor conditions, monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM), is classically founded on bulk analysis studies. Low disease burden at the precursor stages has precluded comprehensive analyses of the transcriptomic events underlying malignant transformation. Here, we use single-cell RNA sequencing data from 29,387 bone marrow plasma cells from 26 patients with MGUS, SMM, or MM and 9 healthy controls to characterize the transcriptional transformation at each step of progression. Due to varying disease burdens, many samples contained a mixture of healthy and neoplastic plasma cells. We leveraged this impurity to perform a patient-specific characterization of the disease, comparing each patient's neoplastic and healthy plasma cells. This approach isolated the disease phenotype in each patient, which is usually confounded by biological and technical variability when comparing tumors to samples from healthy donors. We found that neoplastic cells from patients with MGUS and SMM already exhibit phenotypic changes similar to those of advanced myeloma. We observed upregulation of genes corresponding to known MM subtypes, such as CCND1 in patients with t(11;14) translocations and other known driver genes such as HIST1H1C. We also found universal downregulation of certain genes such as CD27, a member of the tumor necrosis factor receptor family associated with the differentiation of B cells into plasma cells, which may signify a common loss of a normal plasma phenotype across samples with different driver events and stages. Pathway analysis of differentially expressed genes further revealed that biological pathways related to myeloma were altered as early as MGUS. We observed that SMM patients with hyperdiploidy exhibit upregulation of ribosomal proteins, as reported in advanced disease. Upregulated genes in select MGUS and SMM samples were enriched for the eukaryotic translation initiation factor 3 (eIF3) complex, which plays important roles in translation, as well as proteasome activity, a function central to the survival of MM and targeted by therapies such as bortezomib. We observed enrichment of the E2F family of transcription factors in MGUS and SMM samples; these are master regulators of proliferation that have been suggested as therapeutic targets in myeloma. Five samples were enriched for genes associated with extracellular exosomes, which has been reported to play an important role in cancer cell signaling and to contribute to osteolysis and drug resistance in MM. Pathway enrichment of genes downregulated in neoplastic cell populations revealed weakened response to endoplasmic reticulum and oxidative stress, presumably allowing myeloma cells to tolerate high volumes of abnormal protein production without apoptosing. To further identify shared gene expression patterns across samples, we employed a Bayesian Non-Negative Matrix Factorization method to decompose our data into 31 gene signatures that capture its variability. In addition to recovering signatures corresponding to known MM subtypes, demonstrating that our method captures cohesive transcriptional networks, we find signatures that capture disease biology shared across subtypes. Most notably, we identified a signature that is active in healthy plasma cells across disease stages and dramatically lost in MM and precursor cells. The top genes in this signature include CD27 and CD79A, which are associated with the B cell lineage and whose downregulation may signify dedifferentiation of premalignant cells as early as MGUS, and JSRP1, CTSH, and HCST, genes as of yet unreported to be involved in plasma and MM cell biology. This phenotype would be obscured at early disease stages by bulk analysis. We validated the discovery and behavior of this signature in an external single-cell dataset from Ledergor et al. (Nature Medicine 2018). In summary, using single-cell RNA sequencing, we discovered that canonical MM pathways are altered as early as MGUS and identified a signature of genes which distinguishes healthy and neoplastic cells even at early disease stages. Our identification of patient-specific transcriptional changes as early as MGUS paves the way for future work exploring personalized treatment approaches prior to malignant disease. Disclosures Haradhvala: Constellation Pharmaceuticals a MorphoSys Company: Consultancy. Zavidij: Constellation Pharmaceuticals: Current Employment. Sontag: curai health: Current holder of individual stocks in a privately-held company; Takeda Pharmaceuticals: Research Funding; Genentech: Research Funding; IBM: Research Funding. Ghobrial: AbbVie, Adaptive, Aptitude Health, BMS, Cellectar, Curio Science, Genetch, Janssen, Janssen Central American and Caribbean, Karyopharm, Medscape, Oncopeptides, Sanofi, Takeda, The Binding Site, GNS, GSK: Consultancy. Getz: IBM, Pharmacyclics: Research Funding; Scorpion Therapeutics: Consultancy, Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2948
Author(s):  
Renata Skovronova ◽  
Cristina Grange ◽  
Veronica Dimuccio ◽  
Maria Chiara Deregibus ◽  
Giovanni Camussi ◽  
...  

Extracellular vesicles released by mesenchymal stromal cells (MSC-EVs) are a promising resource for regenerative medicine. Small MSC-EVs represent the active EV fraction. A bulk analysis was applied to characterise MSC-EVs’ identity and purity, with the assessment of single EV morphology, size and integrity using electron microscopy. We applied different methods to quantitatively analyse the size and surface marker expression in medium/large and small fractions, namely 10k and 100k fractions, of MSC-EVs obtained using sequential ultracentrifugation. Bone marrow, adipose tissue and umbilical cord MSC-EVs were compared in naive and apoptotic conditions. As detected by electron microscopy, the 100k EV size < 100 nm was confirmed by super-resolution microscopy and ExoView. Single-vesicle imaging using super-resolution microscopy revealed heterogeneous patterns of tetraspanins. ExoView allowed a comparative screening of single MSC-EV tetraspanin and mesenchymal markers. A semiquantitative bead-based cytofluorimetric analysis showed the segregation of immunological and pro-coagulative markers on the 10k MSC-EVs. Apoptotic MSC-EVs were released in higher numbers, without significant differences in the naive fractions in surface marker expression. These results show a consistent profile of MSC-EV fractions among the different sources and a safer profile of the 100k MSC-EV population for clinical application. Our study identified suitable applications for EV analytical techniques.


2021 ◽  
Author(s):  
Sylvia Hilliard ◽  
Giovane Tortelote ◽  
Hongbing Liu ◽  
Chao-Hui Chen ◽  
Samir S El-Dahr

Background: Cis-regulatory elements (CREs), such as enhancers and promoters, and their cognate transcription factors play a central role in cell fate specification. Bulk analysis of CREs has provided insights into gene regulation in nephron progenitor cells (NPCs). However, the cellular resolution required to unravel the dynamic changes in regulatory elements associated with cell fate choices remains to be defined. Methods: We integrated single-cell chromatin accessibility (scATAC-seq) and gene expression (scRNA-seq) in embryonic E16.5 (self-renewing) and postnatal P2 (primed) mouse Six2GFP NPCs. This analysis revealed NPC diversity and identified candidate CREs. To validate these findings and gain additional insights into more differentiated cell types, we performed a multiome analysis of E16.5 and P2 kidneys. Results: CRE accessibility recovered the diverse states of NPCs and precursors of differentiated cells. Single-cell types such as podocytes, proximal and distal precursors are marked by differentially accessible CREs. Domains of regulatory chromatin as defined by rich CRE-gene associations identified NPC fate-determining transcription factors (TF). Likewise, key TF expression correlates well with its regulon activity. Young NPCs exhibited enrichment in accessible motifs for bHLH, homeobox, and Forkhead TFs, while older NPCs were enriched in AP-1, HNF1, and HNF4 motif activity. A subset of Forkhead factors exhibiting high chromatin activity in podocyte precursors. Conclusion: Defining the regulatory landscape of nephrogenesis at single-cell resolution informs the basic mechanisms of nephrogenesis and provides a foundation for future studies in disease states characterized by abnormal nephrogenesis.


Sign in / Sign up

Export Citation Format

Share Document