Rapid Determination of Metronidazole and 2-Hydroxymetronidazole in Murine Blood Plasma

Author(s):  
Nina Zemanová ◽  
Pavel Anzenbacher ◽  
Tomáš Hudcovic ◽  
Eva Anzenbacherová

Abstract Metronidazole is a drug used to treat bacterial and protozoan infections. Nowadays, it is one of the most frequently prescribed drugs worldwide. The main aim of this paper is to present a rapid, reliable and simple high-performance liquid chromatography (HPLC) method to determine metronidazole along with its primary metabolite, 2-hydroxymetronidazole, in plasma or serum using paracetamol as an internal standard. A total of 100% methanol was used to denature plasma proteins. After centrifugation, the supernatant was evaporated under nitrogen flow. The samples were dissolved in the mobile phase and injected into a Li-Chrospher RP-18 column. A total of 10 mmol/L NaH2PO4: acetonitrile (90:10, v/v) solution with a flow rate of 1 mL/min was used as the mobile phase. Metronidazole and 2-hydroxymetronidazole were detected at two different wavelengths at 320 nm and 311 nm, respectively. The method is characterized by high precision (relative standard deviation % < 6). The method was used for the determination of metronidazole and 2-hydroxymetronidazole in murine blood using small amounts of plasma (≤100 μL).

2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


1982 ◽  
Vol 65 (5) ◽  
pp. 1063-1065
Author(s):  
Stanley E Roberts

Abstract A high performance liquid chromatographic (HPLC) method is described for the quantitative determination of primidone in tablets. A ground tablet sample is diluted directly in the mobile phase, at a concentration of about 1 mg/mL of primidone, mixed and deaerated, and filtered. The resulting solution is then quantitated by HPLC. The average spike recoveries for the 50 mg and 250 mg tablets were 101.2% and 99.0%, respectively. The average recovery for an authentic mixture formulated at the 250 mg level was 100.1% with a relative standard deviation of 0.45%.


2010 ◽  
Vol 93 (4) ◽  
pp. 1059-1068 ◽  
Author(s):  
Predrag Lj Džodić ◽  
Ljiljana J ivanovi ◽  
Ana D Proti ◽  
Mira L Zeevi ◽  
Biljana M Joci

Abstract An accurate and precise RP-HPLC method was developed and validated for the determination of carbamazepine and its impurities iminostilbene and iminodibenzyl in a tablet formulation with fluphenazine as an internal standard. Buffermethanol (50 + 50, v/v) was used as the mobile phase. During validation, specificity, linearity, precision, accuracy, LOD, LOQ, and robustness of the method were tested. The method was proven to be specific against placebo interference. Linearity was evaluated over the concentration range of 100500, 0.050.25, and 0.10.5 g/mL, and the r values were 0.9994, 0.9997, and 0.9979 for carbamazepine, iminostilbene, and iminodibenzyl, respectively. Intraday precision of the method was good, and RSD was below 2 for all analytes. The accuracy of the method ranged from 100.69 to 102.10, 99.76 to 102.66, and 99.26 to 100.08 for carbamazepine, iminostilbene, and iminodibenzyl, respectively. LOD was 0.0125, 0.025, and 0.05 g/mL and LOQ was 0.05, 0.05, and 0.1 g/mL for carbamazepine, iminostilbene, and iminodibenzyl, respectively. Robustness of the method was proven by using a chemometric approach. The method was successfully applied to the analysis of commercially available carbamazepine tablets and showed good repeatability, with RSD below 2.


2014 ◽  
Vol 68 (6) ◽  
Author(s):  
Helen Karasali ◽  
Konstantinos Kasiotis ◽  
Kyriaki Machera

AbstractAn isocratic reversed-phase high-performance liquid chromatographic (RP-HPLC) method with diode array detection (DAD) was developed for the determination of aluminium tris(ethyl phosphonate) (fosetyl-aluminium, fosetyl-Al) in plant-protection products. The method involves extraction of the active ingredient by sonication of the sample with water and direct measurement by RPHPLC. The isocratic RP-HPLC method for the analysis of fosetyl-Al thus developed was then validated for specificity, linearity, precision, and accuracy. The chromatographic peak confirmation was performed by LC-MS using electron spray ionisation in the negative-ion mode. The repeatability of the method, expressed as relative standard deviation (RSD, %), was found to be 0.5 % and the limit of detection was 0.035 mg mL−1. The average recoveries of the three fortification levels varied from 96.7 % to 100.6 % and the RSDs ranged between 2.6 % and 6.3 %. The precision of the method was also considered to be acceptable as the experimental repeatability relative standard deviation (RSDr) was lower than the RSDr, calculated using the Horwitz equation. The method is rapid, simple, accurate, cost-effective, and provides a new and reliable means for the analysis of fosetyl-Al in formulated products.


2010 ◽  
Vol 93 (5) ◽  
pp. 1672-1677
Author(s):  
Hoi-Sze Yeung ◽  
Wing-Hong Ching ◽  
Shirley Sau-Ling Lai ◽  
Wai-On Lee ◽  
Yiu-Tung Wong

Abstract An HPLC method with a fluorescence detector (HPLC-FLD) was described for the quantitative determination of closantel and rafoxanide in bovine and ovine muscles. A structural analog closely related to rafoxanide, viz., N-[4-(4-chlorophenoxy) phenyl]-2-hydroxy-3,5-diiodobenzamide, was synthesized as an internal standard. Bovine and ovine muscles were extracted with acetonitrileacetone (60 + 40, v/v) followed by cleanup on mixed mode anionic exchange SPE cartridges. After evaporation and reconstitution with the mobile phase, the sample was analyzed by HPLC-FLD using internal standard calibration. The method was validated by using fortified bovine and ovine muscles at 15, 30, and 60 µg/kg. The accuracy and RSD were 70110% and 10%, respectively.


2007 ◽  
Vol 90 (6) ◽  
pp. 1532-1538 ◽  
Author(s):  
Bharathi Avula ◽  
Vaishali C Joshi ◽  
Yan-Hong Wang ◽  
Ikhlas A Khan

Abstract A high-performance liquid chromatographic (HPLC) method with ultraviolet absorption detection was developed to determine the presence of anthraquinones, polydatin, and resveratrol in Polygonum multiflorum Thunb. as well as other medicinal Polygonum species, viz., P. cuspidatum, P. oriental, P. aviculare, and P. vulgare, as well as commercial products that claim to contain P. multiflorum. The best results were obtained with a Phenomenex Gemini C18 column using gradient mobile phase composed of water (0.1 acetic acid) and acetonitrile (0.1 acetic acid). Elution was at a flow rate of 1.0 mL/min. The detection wavelength was 280 nm for anthraquinones and 320 nm for polydatin and resveratrol. The main anthraquinones identified were emodin and physcion. The HPLC pattern of P. multiflorum was also compared with 5 other species of Polygonum. The method was validated for precision, repeatability, and accuracy. The relative standard deviation was between 0.9 and 1.6. The method was sensitive, quick, and accurate for determination of anthraquinones, polydatin, and resveratrol in 6 different species of Polygonum and can be used for quality control of P. multiflorum. The commercial samples and the 6 Polygonum species were compared microscopically, and a detailed description is provided for P. multiflorum.


2010 ◽  
Vol 13 (2) ◽  
pp. 128 ◽  
Author(s):  
Fakhreddin Jamali ◽  
Alyaa Ibrahim

Purpose. An improved HPLC method with fluorescence detection was developed and validated for determination of glucosamine in human and rat biological samples. Method. Aliquot of 0.1 mL plasma was spiked with mannosamine HCl as the internal standard (IS); proteins were precipitated with acetonitrile; the clear layer was derivatized with 9-fluorenylmethyl chloroformate (8 mM/acetonitrile) in presence of borate 0.2 M buffer at 30o C for 30 min. The excess derivatizing agent was removed with 1-aminoadamantane HCl (300 mM in acetonitrile-water 1:1). Chromatographic separation was achieved on a C18 (100mm X 4.6 mm, id 3μm) reversed phase column using 0.1% acetic acid/acetoniltrile gradient mobile phase at 1 mL/min flow rate. Glucosamine was determined in the plasma of a human and rats and also in rat urine. Results. The analytes were detected at excitation and emission wavelengths of 263 and 315 nm, respectively. The assay was linear over the range of 0.05-20 µg/mL with a typical correlation coefficient of 0.999 and intra-day and inter-day coefficient of variation of


Author(s):  
Panchumarthy Ravisankar ◽  
Devala Rao G ◽  
Md Shaheem Sulthana ◽  
Supriya K ◽  
Mounika G ◽  
...  

Objective: Objective of the present investigation is to develop a speedy isocratic reverse phase high-performance liquid chromatography (RP-HPLC) method for the separation and quantitative determination of 5 angiotensin II - receptor antagonists, namely, telmisartan, losartan, valsartan, olmesartan, irbesartan, and atenolol along with thiazide diuretics mostly hydrochlorothiazide (HCTZ).Methods: RP-HPLC method was evolved using Welchrom C18 column (4.6 × 250 mm, 5 μm) as a stationary phase with the mobile phase comprising a variety of phosphate buffer with pH-3.3 and acetonitrile in the proportion of 50:50 v/v. The mobile phase was pumped at a current rate of 1 mL/minute. The detection wavelength was carried out at 230 nm.Results: The total run time was 6 minutes and the elution window of only 3 minutes. The peaks were eluted with decorous resolution. The calibration curves were linear (r2=0.9998) in all cases. The percentage relative standard deviation (RSD%) was <2% and average recovery was above 99.95%. The method was validated specificity, precision, and accuracy. High recovery values and low RSD% prove that this method is very accurate and reproducible. The developed method was applied to the estimation of the above-said drugs in binary combinations from different manufacturers which were a good agreement with label claim.Conclusion: The important advantage of developed method was that the five individual drugs can be determined on a single chromatographic system without alteration in detection wavelength and mobile phase composition. This novel method was statistically validated as per ICH guidelines. The optimized method proved to be linear, accurate, and robust. Hence, the above said proposed method was found to be a rapid tool for the routine determination of the above-said drugs in alone or combination with HCTZ in quality control analysis without interference of excipients.


2020 ◽  
Vol 16 (8) ◽  
pp. 1106-1112
Author(s):  
Ibrahim A. Darwish ◽  
Nasr Y. Khalil ◽  
Mohammad AlZeer

Background: Axitinib (AXT) is a member of the new generation of the kinase inhibitor indicated for the treatment of advanced renal cell carcinoma. Its therapeutic benefits depend on assuring the good-quality of its dosage forms in terms of content and stability of the pharmaceutically active ingredient. Objective: This study was devoted to the development of a simple, sensitive and accurate stabilityindicating high-performance liquid chromatographic method with ultraviolet detection (HPLC-UV) for the determination of AXT in its bulk and dosage forms. Methods: Waters HPLC system was used. The chromatographic separation of AXT, internal standard (olaparib), and degradation products were performed on the Nucleosil CN column (250 × 4.6 mm, 5 μm). The mobile phase consisted of water:acetonitrile:methanol (40:40:20, v/v/v) with a flow rate of 1 ml/min, and the UV detector was set at 225 nm. AXT was subjected to different accelerated stress conditions and the degradation products, when any, were completely resolved from the intact AXT. Results: The method was linear (r = 0.9998) in the concentration range of 5-50 μg/ml. The limits of detection and quantitation were 0.85 and 2.57 μg/ml, respectively. The accuracy of the method, measured as recovery, was in the range of 98.0-103.6% with relative standard deviations in the range of 0.06-3.43%. The results of stability testing revealed that AXT was mostly stable in neutral and oxidative conditions; however, it was unstable in alkaline and acidic conditions. The kinetics of degradation were studied, and the kinetic rate constants were determined. The proposed method was successfully applied for the determination of AXT in bulk drug and dosage forms. Conclusions: A stability-indicating HPLC-UV method was developed and validated for assessing AXT stability in its bulk and dosage forms. The method met the regulatory requirements of the International Conference on Harmonization (ICH) and the Food and Drug Administration (FDA). The results demonstrated that the method would have great value when applied in quality control and stability studies for AXT.


Author(s):  
ENDANG LUKITANINGSIH ◽  
FATHUL JANNAH ◽  
RATNA BUDHI PEBRIANA ◽  
RATNA DEWI PUSPITA ◽  
TAUFIQUROHMAN . ◽  
...  

Objective: This research aims to validate the method for rifampicin analysis in plasma by using High-Performance Liquid Chromatography (HPLC) that can be used to study the bioequivalence of a generic tablet of rifampicin 450 mg “X” marketed in Indonesia. Methods: Bioequivalence test was analysed using HPLC equipped with UV-Vis detector at 377 nm. The mobile phase used was acetonitrile-phosphate buffer pH 6.8 (45:55) delivered at a flow rate of 1.5 ml/min. Bioequivalence test was conducted on a limited number of subjects (n=8). The subjects were divided into two groups randomly. The pharmacokinetic profiles of the test tablet and reference tablet were statistically calculated using SPSS program to see the test tablet and reference tablet were bioequivalence or not. Results: The developed HPLC method for rifampicin analysis in plasma was sufficiently valid based on the International Conference on Harmonization (ICH) and European Medicines Agency (EMA) guideline, with precision and accuracy values were % Relative Standard Deviation (% RSD = 1.40–13.04) and % Recovery (86.24–102.13), respectively. Meanwhile, the method was linear over studied concentration (0.05 to 10.26 µg/ml) with a coefficient of determination (R2) = 0.9984. The method also had good stability and sensitivity. The result of statistical calculation showed that the generic rifampicin tablet X was bioequivalence toward the reference tablet Rimactan 450 mg. Conclusion: The test rifampicin tablet that was, the generic tablet “X” was bioequivalence toward the reference rifampicin tablet “Rimactan”.


Sign in / Sign up

Export Citation Format

Share Document