Alkaline phosphatase isoenzymes.

1982 ◽  
Vol 28 (10) ◽  
pp. 2007-2016 ◽  
Author(s):  
D W Moss

Abstract The human alkaline phosphatases constitute a system of multiple molecular forms of enzymes in which heterogeneity is partly due to genetic factors and partly to posttranslational modifications. Recognition of the nature and occurrence of these multiple forms has made a significant contribution both to the understanding of changes in alkaline phosphatase values for serum in disease and to the use of alkaline phosphatase measurements in diagnosis. Many of the diagnostic advantages of alkaline phosphatase isoenzyme analysis can be obtained with the aid of qualitative methods such as zone electrophoresis. However, quantitative methods are needed to take full advantage of the potential benefits of isoenzyme analysis. Selective inactivation methods can be applied successfully to the quantitative analysis of bone and liver alkaline phosphatases in serum. However, the aim of future research should be to remove the limitations at present imposed on quantitative analysis by the close similarities of bone and liver alkaline phosphatases.

1976 ◽  
Vol 22 (7) ◽  
pp. 972-976 ◽  
Author(s):  
H Van Belle

Abstract I studied the kinetics and sensitivity toward inhibition by levamisole and R 8231 of the most important human alkaline phosphatase isoenzymes. N-Ethylaminoethanol proved superior to the now widely used diethanolamine buffer, especially for the enzymes from the intestine and placenta, behaving as an uncompetitive activator. The optimum pH largely depends on the substrate concentration. The addition of Mg2+ has no effect on the activities. The meaning of Km-values for alkaline phosphatases is questioned. Isoenzymes from human liver, bone, kidney, and spleen are strongly inhibited by levamisole or R 8231 at concentrations that barely affect the enzymes from intestine or placenta. The inhibition is stereospecific, uncompetitive, and not changed by Mg2+. Inhibition is counteracted by increasing concentrations of N-ethylaminoethanol. The mechanism of inhibition is suggested to be formation of a complex with the phosphoenzyme.


1977 ◽  
Vol 23 (1) ◽  
pp. 28-34 ◽  
Author(s):  
W H Siede ◽  
U B Seiffert

Abstract We present a new method for quantitative determination of alkaline phosphatase isoenzymes. This method consists of electrophoretic separation on cellulose acetate membranes, special fixation technique to avoid elution and diffusion of enzyme protein during incubation, specific staining, and quantitative evaluation by densitometric measurement. We highly recommend the precedure for routine clinical laboratory use. In all normal individuals we observe two isoenzymes of hepatic origin and one isoenzyme each of osseous, intestinal, and biliary origin. Quantitative normal values are presented. Precision of the method is calculated, the CV being less than 10%. The exactness of densitometric quantification is proved by comparison with kinetic assay of alkaline phosphatase isoenzymes by use of an elution method. Clinical implications of alkaline phosphatase isoenzymograms are reported and discussed in detail.


Author(s):  
Pamela B Brown ◽  
K O Lewis

A method for serum alkaline phosphatase isoenzymes using an enzyme reaction rate analyser is described. The complete urea-induced degradation of enzyme activity is monitored, from which individual isoenzyme activities are obtained by calculating the constituent exponential components of the degradation curve. Activities have been measured with adequate sensitivity and selectivity for up to four isoenzyme components in normal and in pathological sera. The identity of each isoenzyme present is assigned from its characteristic degradation half-life, and by this method bone and liver alkaline phosphatase are clearly distinguished and quantitated, and a composite value for placental-intestinal alkaline phosphatase activity is obtained. The approach promises to be applicable to a wide range of isoenzymes, and in analogy with ‘reaction rate’ the term ‘reaction rate retardation’ is suggested for the procedure.


1977 ◽  
Vol 23 (9) ◽  
pp. 1615-1623 ◽  
Author(s):  
K Higashino ◽  
R Otani ◽  
S Kudo ◽  
Y Yamamura

Abstract We examined 19 hepatoma tissues for alkaline phosphatase isoenzyme and found that six have both the Kasahara isoenzyme and an alkaline phosphatase with a unique electrophoretic mobility, in addition to the liver-type enzyme. From two of six carcinoma tissues, the abnormal enzyme was partly purified and subjected to a detailed analysis, which clarified that the abnormal enzyme resembled a fetal intestinal alkaline phosphatase in most of its enzymic and immunologic properties and also in properties that reflect enzyme structure. This fetal intestinal-type alkaline phosphatase was not found in 24 specimens of normal liver from adults. The relevance of fetal intestinal-type alkaline phosphatase to Kasahara isoenzyme and adult intestinal alkaline phosphatase is discussed. The fetal and adult intestinal alkaline phosphatases differ in electrophoretic mobility, heat stability, and reactivity with concanavalin A. The adult-type enzyme has two components; only the electrophoretically slower, neuraminidase-resistant one is described here.


1980 ◽  
Vol 26 (7) ◽  
pp. 840-845 ◽  
Author(s):  
J L Millán ◽  
M P Whyte ◽  
L V Avioli ◽  
W H Fishman

Abstract We used heat inactivation, L-phenylalanine inhibition, and electrophoresis on polyacrylamide gel and cellulose acetate membranes--with and without use of specific antisera against the liver-bone, intestinal, and placental isoenzymes--to distinguish and quantitate the different alkaline phosphatase isoenzymes in sera from 23 adult members of a kindred affected by the adult form of hypophosphatasia. Nine subjects had values for total activity more than two standard deviations below the mean values for age- and sex-matched normal persons. Bone isoenzyme was diminished in all nine, whereas liver isoenzyme was subnormal in only four. Phosphoethanolamine and phosphoserine in the urine of eight hypophosphatasemic individuals correlated inversely with both total and liver alkaline phosphatase activity in their serum, but not with the activity of the bone isoenzyme. Total activity in the serum of adult kindred members correlated best with the circulating liver isoenzyme activity. The findings suggest that altered hepatic metabolism is responsible for the increased urinary excretion of phosphoethanolamine, and perhaps phosphoserine, in hypophosphatasia.


1982 ◽  
Vol 28 (12) ◽  
pp. 2426-2428 ◽  
Author(s):  
T Komoda ◽  
S Hokari ◽  
M Sonoda ◽  
Y Sakagishi ◽  
T Tamura

Abstract With p-nitrophenyl phosphate as the substrate, there reportedly is no organ-specific inhibition of alkaline phosphatase (EC 3.1.3.1) activity by L-phenylalanine. However, we found that at pH 10.0, with p-nitrophenyl phosphate as the substrate, L-phenylalanine obviously inhibits the alkaline phosphatase isoenzyme from human placenta, whereas there is little if any inhibition of the isoenzyme from human intestine. Because of the differing effects of substrates (p-nitrophenyl phosphate and phenyl phosphate) and their enzymic products (p-nitrophenol and phenol) for L-phenylalanine action on the placental alkaline phosphatase isoenzyme, we suggest that the isoenzyme--inhibitor--substrate complex and the effect of released phosphate on L-phenylalanine inhibition of the isoenzyme activity differ from each other.


1981 ◽  
Vol 194 (3) ◽  
pp. 857-866 ◽  
Author(s):  
H Galski ◽  
S E Fridovich ◽  
D Weinstein ◽  
N De Groot ◽  
S Segal ◽  
...  

The synthesis and secretion of alkaline phosphatases in vitro by human placental tissue incubated in organ culture were studied. First-trimester placenta synthesizes and secretes two different alkaline phosphatase isoenzymes (heat-labile and heat-stable), whereas in term placenta nearly all the alkaline phosphatase synthesized and secreted is heat-stable. The specific activities of alkaline phosphatases in first-trimester and term placental tissue remain constant throughout the time course of incubation. In the media, specific activities increase with time. Hence, alkaline phosphatase synthesis seems to be the driving force for its own secretion. The rates of synthesis de novo and of alkaline phosphatases were measured. The specific radioactivities of the secreted alkaline phosphatases were higher than the corresponding specific radioactivities in the tissue throughout the entire incubation period. The intracellular distribution of the alkaline phosphatase isoenzymes was compared.


Author(s):  
H. J. W. Cleeve

Summary Samples from 260 non-jaundiced patients with elevated plasma alkaline phosphatase activities were analysed for γ-glutamyltransferase and 5′-nucleotidase activity, and for alkaline phosphatase isoenzyme pattern. The plasma γ-glutamyltransferase activity was found to be a more sensitive index than that of plasma 5′-nucleotidase in confirming the presence of a liver component of the elevated plasma alkaline phosphatase. If the γ-glutamyltransferase level is normal it is probable that the increase in plasma alkaline phosphatase activity is of bone origin. However, an elevated γ-glutamyltransferase result does not exclude a bone component; in this situation plasma alkaline phosphatase isoenzymes should be estimated. The causes of elevated activities of plasma alkaline phosphatase, 5′-nucleotidase and γ-glutamyltransferase, found in this investigation were generally the same as those found by other workers. The effect of treatment by drugs on γ-glutamyltransferase, an inducible enzyme, needs more investigation.


Sign in / Sign up

Export Citation Format

Share Document