Neopterin as a predictive marker for disease progression in human immunodeficiency virus type 1 infection.

1989 ◽  
Vol 35 (8) ◽  
pp. 1746-1749 ◽  
Author(s):  
D Fuchs ◽  
T J Spira ◽  
A Hausen ◽  
G Reibnegger ◽  
E R Werner ◽  
...  

Abstract We assessed the value of urinary neopterin concentrations for prognosis of disease progression in HIV-1-infected patients. Sixty-eight anti-HIV-1 seropositive homosexuals with lymphadenopathy syndrome were tested for urinary neopterin and T-cell subset counts in 1982-83, and the incidence rate at which they developed acquired immunodeficiency syndrome (AIDS) between then and May 1988 was evaluated. Overall, 21 of 68 (30.9%) cases progressed to AIDS, with a yearly progression rate of 4-9%. The predictive value of urinary neopterin concentrations was higher (P = 0.0042) than that of CD4+ T-cell counts (P = 0.015) or the CD4+/CD8+ T-cell ratio (P = 0.022). Counts of CD8+ T-cells failed to show predictive significance (P = 0.29). Similarly, multivariate-regression analysis indicated that neopterin concentrations and CD4+ T-cell numbers were significant copredictors. Produced by human macrophages activated by interferon gamma, neopterin is thus a marker of macrophage activation via T cells. We conclude that these data demonstrate a correlation between the amount of T-cell-macrophage activation, as measured by urinary neopterin concentrations, and the progression of the disease.

2019 ◽  
Vol 94 (2) ◽  
Author(s):  
Fei Yu ◽  
Qijuan Li ◽  
Xi Chen ◽  
Jun Liu ◽  
Linghua Li ◽  
...  

ABSTRACT Follicular helper T (TFH) cells have been shown to support productive human immunodeficiency virus type 1 (HIV-1) replication and to serve as a key component of the latent viral reservoir. However, the viral characteristics of this latent reservoir and the clinical relevance of this reservoir remain unclear. In this study, we assessed the tropic composition of latent viruses from peripheral TFH (pTFH), non-TFH memory, and naive CD4+ T cells from individuals with HIV-1 infections on suppressive combined antiretroviral therapy (cART). X4-tropic latent HIV-1 was preferentially enriched in pTFH cells compared to levels in the other two subsets. Interestingly, the ratio of X4-tropic latent HIV-1 in pTFH cells not only was robustly and inversely correlated with blood CD4+ T cell counts across patients but also was prognostic of CD4+ T cell recovery in individuals on long-term cART. Moreover, patients with higher X4-tropic latent HIV-1 ratios in pTFH cells showed greater risks of opportunistic coinfections. These findings reveal the characteristics of latent HIV-1 in TFH cells and suggest that the ratio of X4-tropic latent HIV-1 in pTFH cells is a valuable indicator for disease progression and cART efficacy. IMPORTANCE TFH cells have been shown to harbor a significant amount of latent HIV-1; however, the viral characteristics of this reservoir and its clinical relevance remain largely unknown. In this study, we demonstrate that X4-tropic latent HIV-1 is preferentially enriched in pTFH cells, which also accurately reflects the viral tropism shift. The ratio of X4-tropic proviruses in pTFH cells but not in other memory CD4+ T cell subsets is inversely and closely correlated with blood CD4+ T cell counts and CD4+ T cell recovery rates with cART. Our data suggest that the ratio of X4-tropic provirus in peripheral TFH cells can be easily measured and reflects disease progression and treatment outcomes during cART.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 412-412
Author(s):  
Gian-Paolo Rizzardi ◽  
Silvia Nozza ◽  
Lucia Turchetto ◽  
Alexandre Harari ◽  
Giuseppe Tambussi ◽  
...  

Abstract Several reasons warrant the development of innovative therapeutic strategies for HIV/AIDS. These include the inability of highly active antiretroviral therapy (HAART) to eradicate the virus, the HAART-induced severe long-term toxicity occurring in patients, the development of HAART-resistant HIV-1 strains in the host, and the lack of an efficacious vaccine. Genetic engineering of hematopoietic stem cells (HSC) combined with nonmyeloablative conditioning proved safety and efficacy in the treatment of adenosine deaminase-deficient severe combined immunodeficiency. The feasibility of such an approach in HIV-1 infection remains, however, to be determined. In an open-label prospective trial, 18 patients with HIV-1 infection (mean±SE age 35.7±1.2, range 18.9–40; HAART since at least 3 months; CD4+ T cell counts >200/μl) have been enrolled in a HSC retroviral vector gene therapy trial using RevM10 and polAS as anti-HIV genes. Nine patients received fresh transduced CD34+ cells and all study treatments, including CD34+ cell mobilisation with G-CSF (10 μg/kg/day for 5 days), CD34+ cell collection through aphaeresis, and nonmyeloablative conditioning (1.8 g/m2 cyclophosphamide [CY]), while 9 did not undergo all study phases. All patients have been followed-up for at least 48 weeks. Mean±SE baseline CD4+ T cell counts were 577±42, while plasma HIV-1 RNA levels (VL) were below the limit of detection (80 copies/ml) of the assay (Nasba Organon) in 9 out of 18 patients. CD34+ cells were efficiently mobilized and collected from patients with HIV-1 infection, achieving 4.42±0.64 x 106 CD34+ cells/kg after purification (CliniMACS, Miltenyi Biotec), and 3.93±1.2 x 106 viable CD34+ cells/kg in the infusion product, 30% of which were transduced CD34+ cells. It is worth noting that 1) effective VL suppression significantly increased the yields of mobilization, purification and transduction processes, and 2) peripheral blood CD34+ cell counts before aphaeresis (mean, 72 cells/μl) predicted the number of viable CD34+ cells infused (β 0.722, 95% CI 0.007–0.092, P=0.028, regression analysis), and a cut-off value >30 CD34+ cells/μl predicted the success of all procedures (P=0.018, χ2 analysis, Fisher’s exact test). Gene marking levels, predicted by the number of transduced cells infused, were detectable in all patients, though they significantly decreased over time. CY conditioning caused a marked decrease in CD4+ T cell counts, restored over long-term follow-up. This recovery correlated with levels of CD4+ TCR-rearrangement excision circles and CD4+CD45RA+CCR7+ naïve T cells, indicating thymus regeneration capacity in >30-year-old patients with HIV-1 infection. Importantly, CMV-specific IL-2- and IFN- γ-secreting CD4+CD69+ T cells were able to expand while no clinically relevant CMV reactivation occurred; moreover, proportions of IL-2, IL-2/IFN- γ, and IFN-γ-secreting HSV, TT, and EBV-specific CD4+ T cells were not altered by CY over time. These data indicate that effective stem cell gene transfer is feasible in patients with HIV-1 infection, and suggest the use of non-lymphocyte-toxic conditioning regimen, such as busulfan.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3106-3106
Author(s):  
Sachi Tsunemi ◽  
Tsuyoshi Iwasaki ◽  
Takehito Imado ◽  
Satoshi Higasa ◽  
Eizo Kakishita ◽  
...  

Abstract Human immunodeficiency virus (HIV) infection is characterized by marked defects in CD4+ helper T cell (Th) functions that commonly progress to a substantial decline in peripheral CD4+ T cell counts. However, the mechanisms responsible for the loss of Th functions in HIV-infected patients independent of CD4+ T cell counts remains unclear. CD4+CD25+ regulatory T cells (T Reg) are essential for down-regulation of both autoreactive and alloreactive T cells. Therefore, we decided to investigate the role of T Reg in immune status of HIV-infected patients. We examined the expression of cell surface CD25, cytoplasmic IL-4 and cytoplasmic IFN-gamma in peripheral blood CD4+ T cells from both healthy controls (n=9) and HIV-infected patients (n=43). We also compared T Reg functions between the 2 groups. CD4+CD25+ T Reg isolated from both HIV-infected patients and healthy controls strongly expressed CD45RO, HLA-DR, and FoxP3, and suppressed the proliferation of CD4+CD25− T cells, suggesting that CD4+CD25+ T cells from both healthy controls and HIV-infected patients possess phenotypic and functional characteristics of Treg. CD4+CD25high T cells are a subset of circulating CD4+CD25+ T cells in normal humans and exhibit strong in vitro regulatory functions similar to those reported for murine CD4+CD25+ T Reg. We measured the frequency of CD4+CD25high T Reg by analysis of surface CD25 on CD4+ T cells in peripheral blood samples. We also examined Th1 and Th2 frequencies by analysis of cytoplasmic IFN-gamma and IL-4 levels in CD4+ T cells. T Reg from HIV-infected patients with detectable plasma HIV-1 RNA showed a statistically significant increase in CD4+CD25high cell frequency (p<0.05) compared to healthy controls, with T Reg frequencies inversely proportional to CD4+ T cell numbers (p<0.01). However, in HIV-infected patients with undetectable plasma HIV-RNA, frequencies of CD4+CD25high T Reg were not increased and not related to CD4+ T cell numbers. In both HIV-infected patient groups, T Reg frequency was inversely related to Th1 frequency (detectable: p<0.05, undetectable: p<0.001), but positively related to Th2 frequency (detectable: p<0.01, undetectable: p<0.001). Our results indicate that increased frequencies of peripheral blood T Reg were related to disease progression as measured by detectable plasma HIV-1 RNA, decreased peripheral blood CD4+ T cell counts, and polarization toward Th2 immune responses in HIV-infected patients. HIV infection may lead to induction of T reg that inhibit antiviral immune responses, resulting in the progression of the disease. Manipulation of T Reg could help restore antiviral immune responses in HIV infection, and prevent the progression of HIV infection.


2016 ◽  
Vol 1 (2) ◽  
pp. 260 ◽  
Author(s):  
Yolanda D. Mahnke ◽  
Kipper Fletez-Brant ◽  
Irini Sereti ◽  
Mario Roederer

Background. Highly active antiretroviral therapy induces clinical benefits to HIV-1 infected individuals, which can be striking in those with progressive disease. Improved survival and decreased incidence of opportunistic infections go hand in hand with a suppression of the plasma viral load, an increase in peripheral CD4+ T-cell counts, as well as a reduction in the activation status of both CD4+ and CD8+ T cells.Methods. We investigated T-cell dynamics during ART by polychromatic flow cytometry in total as well as in HIV-1-specific CD4+ and CD8+ T cells. We also measured gene expression by single cell transcriptomics to assess functional state.Results. The cytokine pattern of HIV-specific CD8+ T cells was not altered after ART, though their magnitude decreased significantly as the plasma viral load was suppressed to undetectable levels. Importantly, while CD4+ T cell numbers increased substantially during the first year, the population did not normalize: the increases were largely due to expansion of mucosal-derived CCR4+ CD4+ TCM; transcriptomic analysis revealed that these are not classical Th2-type cells.Conclusion. The apparent long-term normalization of CD4+ T-cell numbers following ART does not comprise a normal balance of functionally distinct cells, but results in a dramatic Th2 shift of the reconstituting immune system.


2014 ◽  
Vol 10 (9) ◽  
pp. e1003830 ◽  
Author(s):  
Melissa M. Norström ◽  
Nazle M. Veras ◽  
Wei Huang ◽  
Mattia C. F. Proper ◽  
Jennifer Cook ◽  
...  

2019 ◽  
Vol 93 (14) ◽  
Author(s):  
Jernej Pušnik ◽  
Michael A. Eller ◽  
Boonrat Tassaneetrithep ◽  
Bruce T. Schultz ◽  
Leigh Anne Eller ◽  
...  

ABSTRACTAcute HIV-1 infection is characterized by high viremia and massive depletion of CD4+T cells throughout all tissue compartments. During this time the latent viral reservoir is established but the dynamics of memory CD4+T cell subset development, their infectability and influence on disease progression during acute HIV-1 infection has not been carefully described. We therefore investigated the dynamics of CD4+T cell memory populations in the RV217 (ECHO) cohort during the acute phase of infection. Interestingly, while we found only small changes in central or effector memory compartments, we observed a profound expansion of stem cell-like memory CD4+T cells (SCM) (2.7-fold;P < 0.0001). Furthermore, we demonstrated that the HIV-1 integration and replication preferentially take place in highly differentiated CD4+T cells such as transitional memory (TM) and effector memory (EM) CD4+T cells, while naive and less mature memory cells prove to be more resistant. Despite the relatively low frequency of productively infected SCM, we suggest that their quiescent phenotype, increased susceptibility to HIV-1 integration compared to naive cells and extensive expansion make them one of the key players in establishment and persistence of the HIV-1 reservoir. Moreover, the expansion of SCM in acute HIV-1 infection was a result of Fas upregulation on the surface of naive CD4+T cells. Interestingly, the upregulation of Fas receptor and expansion of SCM in acute HIV-1 infection was associated with the early viral set point and disease progression (rho = 0.47,P = 0.02, and rho = 0.42,P = 0.041, respectively). Taken together, our data demonstrate an expansion of SCM during early acute HIV-1 infection which is associated with disease outcome.IMPORTANCEUnderstanding the immunopathology of acute HIV-1 infection will help to develop eradication strategies. We demonstrate here that a CD4+T cell memory subset expands during acute HIV-1 infection, which is associated with disease progression.


2015 ◽  
Vol 89 (15) ◽  
pp. 7829-7840 ◽  
Author(s):  
Selena Vigano ◽  
Jordi Negron ◽  
Zhengyu Ouyang ◽  
Eric S. Rosenberg ◽  
Bruce D. Walker ◽  
...  

ABSTRACTHIV-1-specific CD8 T cells can influence HIV-1 disease progression during untreated HIV-1 infection, but the functional and phenotypic properties of HIV-1-specific CD8 T cells in individuals treated with suppressive antiretroviral therapy remain less well understood. Here we show that a subgroup of HIV-1-specific CD8 T cells with stem cell-like properties, termed T memory stem cells (TSCMcells), is enriched in patients receiving suppressive antiretroviral therapy compared with their levels in untreated progressors or controllers. In addition, a prolonged duration of antiretroviral therapy was associated with a progressive increase in the relative proportions of these stem cell-like HIV-1-specific CD8 T cells. Interestingly, the proportions of HIV-1-specific CD8 TSCMcells and total HIV-1-specific CD8 TSCMcells were associated with the CD4 T cell counts during treatment with antiretroviral therapy but not with CD4 T cell counts, viral loads, or immune activation parameters in untreated patients, including controllers. HIV-1-specific CD8 TSCMcells had increased abilities to secrete interleukin-2 in response to viral antigen, while secretion of gamma interferon (IFN-γ) was more limited in comparison to alternative HIV-1-specific CD8 T cell subsets; however, only proportions of IFN-γ-secreting HIV-1-specific CD8 TSCMcells were associated with CD4 T cell counts during antiretroviral therapy. Together, these data suggest that HIV-1-specific CD8 TSCMcells represent a long-lasting component of the cellular immune response to HIV-1 that persists in an antigen-independent fashion during antiretroviral therapy but seems unable to survive and expand under conditions of ongoing viral replication during untreated infection.IMPORTANCEMemory CD8 T cells that imitate the functional properties of stem cells to maintain lifelong cellular immunity have been hypothesized for many years, but only recently have such cells, termed T memory stem cells (TSCMcells), been physically identified and isolated in humans, mice, and nonhuman primates. Here, we investigated whether cellular immune responses against HIV-1 include such T memory stem cells. Our data show that HIV-1-specific CD8 T memory stem cells are detectable during all stages of HIV-1 infection but occur most visibly at times of prolonged viral antigen suppression by antiretroviral combination therapy. These cells may therefore be particularly relevant for designing antiviral immune defense strategies against the residual reservoir of HIV-1-infected cells that persists despite treatment and leads to viral rebound upon treatment discontinuation.


Blood ◽  
2006 ◽  
Vol 109 (7) ◽  
pp. 2912-2920 ◽  
Author(s):  
Marie-Lise Dion ◽  
Rebeka Bordi ◽  
Joumana Zeidan ◽  
Robert Asaad ◽  
Mohammed-Rachid Boulassel ◽  
...  

AbstractIn chronic HIV infection, most untreated patients lose naive CD4+ and CD8+ T cells, whereas a minority preserve them despite persistent high viremia. Although antiretroviral therapy (ART)–mediated viral suppression generally results in a rise of naive and total CD4+ T cells, certain patients experience very little or no T-cell reconstitution. High peripheral T-cell activation has been linked to poor clinical outcomes, interfering with previous evaluations of thymic function in disease progression and therapy-mediated T-cell recovery. To circumvent this, we used the sj/βTREC ratio, a robust index of thymopoiesis that is independent of peripheral T-cell proliferation, to evaluate the thymic contribution to the preservation and restoration of naive CD4+ T cells. We show that the loss of naive and total CD4+ T cells is the result of or is exacerbated by a sustained thymic defect, whereas efficient thymopoiesis supports naive and total CD4+ T-cell maintenance in slow progressor patients. In ART-treated patients, CD4+ T-cell recovery was associated with the normalization of thymopoiesis, whereas the thymic defect persisted in aviremic patients who failed to recover CD4+ T-cell counts. Overall, we demonstrate that efficient thymopoiesis is key in the natural maintenance and in therapy-mediated recovery of naive and total CD4+ T cells.


2005 ◽  
Vol 192 (5) ◽  
pp. 739-748 ◽  
Author(s):  
Yared Mekonnen ◽  
Ronald B. Geskus ◽  
Jan C. M. Hendriks ◽  
Tsehaynesh Messele ◽  
Jose Borghans ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document