Specialization Models of Network Growth
AbstractOne of the most important features observed in real networks is that, as a network’s topology evolves so does the network’s ability to perform various complex tasks. To explain this, it has also been observed that as a network grows certain subnetworks begin to specialize the function(s) they perform. Herein, we introduce a class of models of network growth based on this notion of specialization and show that as a network is specialized using this method its topology becomes increasingly sparse, modular and hierarchical, each of which are important properties observed in real networks. This procedure is also highly flexible in that a network can be specialized over any subset of its elements. This flexibility allows those studying specific networks the ability to search for mechanisms that describe their growth. For example, we find that by randomly selecting these elements a network’s topology acquires some of the most well-known properties of real networks including the small-world property, disassortativity and a right-skewed degree distribution. Beyond this, we show how this model can be used to generate networks with real-world like clustering coefficients and power-law degree distributions, respectively. As far as the authors know, this is the first such class of models that can create an increasingly modular and hierarchical network topology with these properties.