scholarly journals Specialization Models of Network Growth

2018 ◽  
Vol 7 (3) ◽  
pp. 375-392 ◽  
Author(s):  
L A Bunimovich ◽  
D C Smith ◽  
B Z Webb

AbstractOne of the most important features observed in real networks is that, as a network’s topology evolves so does the network’s ability to perform various complex tasks. To explain this, it has also been observed that as a network grows certain subnetworks begin to specialize the function(s) they perform. Herein, we introduce a class of models of network growth based on this notion of specialization and show that as a network is specialized using this method its topology becomes increasingly sparse, modular and hierarchical, each of which are important properties observed in real networks. This procedure is also highly flexible in that a network can be specialized over any subset of its elements. This flexibility allows those studying specific networks the ability to search for mechanisms that describe their growth. For example, we find that by randomly selecting these elements a network’s topology acquires some of the most well-known properties of real networks including the small-world property, disassortativity and a right-skewed degree distribution. Beyond this, we show how this model can be used to generate networks with real-world like clustering coefficients and power-law degree distributions, respectively. As far as the authors know, this is the first such class of models that can create an increasingly modular and hierarchical network topology with these properties.

2021 ◽  
Author(s):  
Yanhua Tian

Power law degree distribution, the small world property, and bad spectral expansion are three of the most important properties of On-line Social Networks (OSNs). We sampled YouTube and Wikipedia to investigate OSNs. Our simulation and computational results support the conclusion that OSNs follow a power law degree distribution, have the small world property, and bad spectral expansion. We calculated the diameters and spectral gaps of OSNs samples, and compared these to graphs generated by the GEO-P model. Our simulation results support the Logarithmic Dimension Hypothesis, which conjectures that the dimension of OSNs is m = [log N]. We introduced six GEO-P type models. We ran simulations of these GEO-P-type models, and compared the simulated graphs with real OSN data. Our simulation results suggest that, except for the GEO-P (GnpDeg) model, all our models generate graphs with power law degree distributions, the small world property, and bad spectral expansion.


2021 ◽  
Author(s):  
Yanhua Tian

Power law degree distribution, the small world property, and bad spectral expansion are three of the most important properties of On-line Social Networks (OSNs). We sampled YouTube and Wikipedia to investigate OSNs. Our simulation and computational results support the conclusion that OSNs follow a power law degree distribution, have the small world property, and bad spectral expansion. We calculated the diameters and spectral gaps of OSNs samples, and compared these to graphs generated by the GEO-P model. Our simulation results support the Logarithmic Dimension Hypothesis, which conjectures that the dimension of OSNs is m = [log N]. We introduced six GEO-P type models. We ran simulations of these GEO-P-type models, and compared the simulated graphs with real OSN data. Our simulation results suggest that, except for the GEO-P (GnpDeg) model, all our models generate graphs with power law degree distributions, the small world property, and bad spectral expansion.


2006 ◽  
Vol 23 (3) ◽  
pp. 746-749 ◽  
Author(s):  
Liu Jian-Guo ◽  
Dang Yan-Zhong ◽  
Wang Zhong-Tuo

2005 ◽  
Vol 42 (03) ◽  
pp. 839-850 ◽  
Author(s):  
Zsolt Katona

Consider the random graph model of Barabási and Albert, where we add a new vertex in every step and connect it to some old vertices with probabilities proportional to their degrees. If we connect it to only one of the old vertices then this will be a tree. These graphs have been shown to have a power-law degree distribution, the same as that observed in some large real-world networks. We are interested in the width of the tree and we show that it is at the nth step; this also holds for a slight generalization of the model with another constant. We then see how this theoretical result can be applied to directory trees.


2020 ◽  
Author(s):  
Renato Silva Melo ◽  
André Luís Vignatti

In the Target Set Selection (TSS) problem, we want to find the minimum set of individuals in a network to spread information across the entire network. This problem is NP-hard, so find good strategies to deal with it, even for a particular case, is something of interest. We introduce preprocessing rules that allow reducing the size of the input without losing the optimality of the solution when the input graph is a complex network. Such type of network has a set of topological properties that commonly occurs in graphs that model real systems. We present computational experiments with real-world complex networks and synthetic power law graphs. Our strategies do particularly well on graphs with power law degree distribution, such as several real-world complex networks. Such rules provide a notable reduction in the size of the problem and, consequently, gains in scalability.


2005 ◽  
Vol 42 (3) ◽  
pp. 839-850 ◽  
Author(s):  
Zsolt Katona

Consider the random graph model of Barabási and Albert, where we add a new vertex in every step and connect it to some old vertices with probabilities proportional to their degrees. If we connect it to only one of the old vertices then this will be a tree. These graphs have been shown to have a power-law degree distribution, the same as that observed in some large real-world networks. We are interested in the width of the tree and we show that it is at the nth step; this also holds for a slight generalization of the model with another constant. We then see how this theoretical result can be applied to directory trees.


2012 ◽  
Vol 1 (2) ◽  
pp. 63-70
Author(s):  
Zhaoyan Jin ◽  
Quanyuan Wu

The PageRank vector of a network is very important, for it can reflect the importance of a Web page in the World Wide Web, or of a people in a social network. However, with the growth of the World Wide Web and social networks, it needs more and more time to compute the PageRank vector of a network. In many real-world applications, the degree and PageRank distributions of these complex networks conform to the Power-Law distribution. This paper utilizes the degree distribution of a network to initialize its PageRank vector, and presents a Power-Law degree distribution accelerating algorithm of PageRank computation. Experiments on four real-world datasets show that the proposed algorithm converges more quickly than the original PageRank algorithm.DOI: 10.18495/comengapp.12.063070


2015 ◽  
Vol 27 (02) ◽  
pp. 1650020
Author(s):  
A. Lachgar ◽  
A. Achahbar

We propose a simple preferential attachment model of growing network using the complementary probability of Barabási–Albert (BA) model, i.e. [Formula: see text]. In this network, new nodes are preferentially attached to not well connected nodes. Numerical simulations, in perfect agreement with the master equation solution, give an exponential degree distribution. This suggests that the power law degree distribution is a consequence of preferential attachment probability together with “rich get richer” phenomena. We also calculate the average degree of a target node at time t[Formula: see text] and its fluctuations, to have a better view of the microscopic evolution of the network, and we also compare the results with BA model.


2020 ◽  
Vol 17 (169) ◽  
pp. 20200165
Author(s):  
Ali Emre Turgut ◽  
İhsan Caner Boz ◽  
İlkin Ege Okay ◽  
Eliseo Ferrante ◽  
Cristián Huepe

We study how the structure of the interaction network affects self-organized collective motion in two minimal models of self-propelled agents: the Vicsek model and the Active-Elastic (AE) model. We perform simulations with topologies that interpolate between a nearest-neighbour network and random networks with different degree distributions to analyse the relationship between the interaction topology and the resilience to noise of the ordered state. For the Vicsek case, we find that a higher fraction of random connections with homogeneous or power-law degree distribution increases the critical noise, and thus the resilience to noise, as expected due to small-world effects. Surprisingly, for the AE model, a higher fraction of random links with power-law degree distribution can decrease this resilience, despite most links being long-range. We explain this effect through a simple mechanical analogy, arguing that the larger presence of agents with few connections contributes localized low-energy modes that are easily excited by noise, thus hindering the collective dynamics. These results demonstrate the strong effects of the interaction topology on self-organization. Our work suggests potential roles of the interaction network structure in biological collective behaviour and could also help improve decentralized swarm robotics control and other distributed consensus systems.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ghislain Romaric Meleu ◽  
Paulin Yonta Melatagia

AbstractUsing the headers of scientific papers, we have built multilayer networks of entities involved in research namely: authors, laboratories, and institutions. We have analyzed some properties of such networks built from data extracted from the HAL archives and found that the network at each layer is a small-world network with power law distribution. In order to simulate such co-publication network, we propose a multilayer network generation model based on the formation of cliques at each layer and the affiliation of each new node to the higher layers. The clique is built from new and existing nodes selected using preferential attachment. We also show that, the degree distribution of generated layers follows a power law. From the simulations of our model, we show that the generated multilayer networks reproduce the studied properties of co-publication networks.


Sign in / Sign up

Export Citation Format

Share Document