scholarly journals Conservation seed physiology of the ciénega endemic, Eryngium sparganophyllum (Apiaceae)

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Dustin Wolkis ◽  
Steve Blackwell ◽  
Shyla Kaninaualiʻi Villanueva

Abstract Knowledge of seed dormancy and optimal propagation techniques is crucial for successful ex situ restoration and reintroduction projects, and determining the seed storage behaviour of a species is critical for the long-term conservation of seeds, further supporting future ex situ efforts. Eryngium sparganophyllum (Apiaceae) is a globally critically endangered plant species endemic to ciénega wetlands of southwest North America. To support in situ and ex situ conservation efforts of E. sparganophyllum, we asked (i) how does the embryo: seed (E:S) ratio change over time once imbibed, (ii) how does germination respond with varying periods of exposure to cold (5°C) and warm (25°C) stratification, and concentrations of gibberellic acid (GA3). By answering these questions, (iii) can dormancy class be inferred, and (iv) what storage behaviour category is exhibited? To answer these questions, we collected seeds in Southern Arizona from one of the few remaining wild populations. We measured embryo growth and tested the effects of cold (0–18 weeks) and warm (0 and 4 weeks) stratification, and 0–1000 ppm gibberellic acid on germination. We also tested the effects of cold (−80°C) dry (~20% equilibrium relative humidity) storage on germination. We found that (i) embryos grow inside seeds prior to germination; (ii) compared to control, cold stratification for at least 6 weeks increased germination and warm stratification had no effect; (iii) 1000-ppm GA3 had the highest germination success; (iv) therefore this species exhibits morphophysiological dormancy; and (v) seeds are orthodox and can therefore be conserved using conventional storage methods. This information will aid managers in the propagation of E. sparganophyllum that is crucial for in situ reintroduction and restoration projects, and seed banking represents a critical ex situ conservation strategy for the preservation of this species.

Author(s):  
Nolipher Khaki Mponya ◽  
Tembo Chanyenga ◽  
Joana Magos Brehm ◽  
Nigel Maxted

Abstract The study analysed the conservation gaps of the priority crop wild relatives (CWR) taxa for Malawi in order to contribute to the development of a harmonized conservation strategy that helps secure the priority CWR under in situ and ex situ. We used taxa distribution modelling, complementarity analysis and ecogeographic land characterization map to analyse spatial diversity and distribution of 123 priority taxa across different adaptive scenarios. We identified areas of observed and predicted richness, the minimum number of protected areas (PAs) that conserve the broadest ecogeographic diversity in situ and the minimum number of grid cells that capture highest diversity outside PAs to recommend the establishment of genetic reserves. We then analysed the representativeness of the conserved ecogeographic diversity of target taxa in ex situ collections to identify ex situ conservation gaps and advise for priority areas for ex situ collections. For the 123 taxa, 70.7% of the total diversity occurs in 36 PAs with 66.8% of the diversity captured in only 10 complementary PAs. Outside PAs, the broadest diversity was conserved in three grid cells of size 5 × 5 km. Fifty-three of 123 taxa have ex situ collections with only three taxa having ex situ collections at the Malawi Plant Genetic Resources Centre. The findings of this study will guide formulation of conservation actions for the priority taxa as well as lobbying for active conservation of the same under in situ and ex situ.


Forests ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 767 ◽  
Author(s):  
Martin Romero-Sanchez ◽  
Ramiro Perez-Miranda ◽  
Antonio Gonzalez-Hernandez ◽  
Mario Velasco-Garcia ◽  
Efraín Velasco-Bautista ◽  
...  

Mexico is home to the highest species diversity of pines: 46 species out of 113 reported around the world. Within the great diversity of pines in Mexico, Pinus culminicola Andresen et Beaman, P. jaliscana Perez de la Rosa, P. maximartinenzii Rzed., P. nelsonii Shaw, P. pinceana Gordon, and P. rzedowskii Madrigal et M. Caball. are six catalogued as threatened or endangered due to their restricted distribution and low population density. Therefore, they are of special interest for forest conservation purposes. In this paper, we aim to provide up-to-date information on the spatial distribution of these six pine species according to different historical registers coming from different herbaria distributed around the country by using spatial modeling. Therefore, we recovered historical observations of the natural distribution of each species and modelled suitable areas of distribution according to environmental requirements. Finally, we evaluated the distributions by contrasting changes of vegetation in the period 1991–2016. The results highlight areas of distribution for each pine species in the northeast, west, and central parts of Mexico. The results of this study are intended to be the basis of in situ and ex situ conservation strategies for the endangered Mexican pines.


2020 ◽  
Author(s):  
Getu Dida ◽  
Bikila Warkineh ◽  
Ermias Lulekal ◽  
Sebsebe Demissew

Abstract This study documents indigenous medicinal plant utilization, management and the threats affecting them. The study carried out in Wonchi District from December to March 2017. Ethnomedicinal data were collected using semi-structural interview, Field observation, Preference and Direct matrix ranking with traditional healers. The Ethnomedicinal use of 68 plant species belonging to 62 genera and 34 families. was documented in the study area. The most commonly used plant families were Lamiaceae 9 species, 13.23%) followed by Asteraceae (8, 11.76%).Most of the plants (70.6%) were reportedly used to treat human diseases. The most frequently used plant parts were leaves (66%), followed by roots (17.64%).The dominant route of remedy administration was oral (38 preparations, 55.9%) followed by dermal (20, 29.4%), nasal (8, 11.8%) and optical (2, 3%). The study showed that Wonchi District is rich in medicinal plant and related indigenous knowledge. However, anthropogenic factors and very poor conservation efforts threaten medicinal plant survival in the study area. Promotion a complementary in-situ and ex-situ conservation strategy for medicinal plants of the District highly recommended.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 638
Author(s):  
Marcelo B. Medeiros ◽  
José F. M. Valls ◽  
Aluana G. Abreu ◽  
Gustavo Heiden ◽  
Suelma Ribeiro-Silva ◽  
...  

This study presents the status of ex situ and in situ conservation for the crop wild relatives of rice, potato, sweet potato, and finger millet in Brazil, and the subsequent germplasm collection expeditions. This research is part of a global initiative entitled “Adapting Agriculture to Climate Change: Collecting, Protecting, and Preparing Crop Wild Relatives” supported by the Global Crop Diversity Trust. Species of the primary, secondary, and tertiary gene pools with occurrences reported in Brazil were included: Oryza alta Swallen, O. grandiglumis (Döll) Prod., O. latifolia Desv., O. glumaepatula Steud., Eleusine tristachya (Lam.) Lam., E. indica (L.) Gaertn., Solanum commersonii Dunal, S. chacoense Bitter, Ipomoea grandifolia (Dammer) O’Donell, I. ramosissima (Poir.) Choisy, I. tiliacea (Willd.) Choisy, I. triloba L., and I. cynanchifolia Meisn. The status of the ex situ and in situ conservation of each taxon was assessed using the gap analysis methodology, and the results were used to plan 16 germplasm collection expeditions. Seeds of the collected material were evaluated for viability, and the protocols for seed germination and cryopreservation were tested. The final conservation score, resulting from the gap analysis and including the average of the ex situ and in situ scores, resulted in a classification of medium priority of conservation for all the species, with the exception of I. grandifolia (high priority). The total accessions collected (174) almost doubled the total accessions of these crop wild relatives incorporated in Embrapa’s ex situ conservation system prior to 2015. In addition, accessions for practically absent species were collected for the ex situ conservation system, such as Ipomoea species, Eleusine indica, and Solanum chacoense. The methods used for dormancy breaking and low temperature conservation for the Oryza, Eleusine, and Ipomoea species were promising for the incorporation of accessions in the respective gene banks. The results show the importance of efforts to collect and conserve ex situ crop wild relatives in Brazil based on previous gap analysis. The complementarity with the in situ strategy also appears to be very promising in the country.


Crop Science ◽  
2006 ◽  
Vol 46 (1) ◽  
pp. 428-436 ◽  
Author(s):  
Elizabeth B. Rice ◽  
Margaret E. Smith ◽  
Sharon E. Mitchell ◽  
Stephen Kresovich

Author(s):  
Roland Bourdeix ◽  
Steve Adkins ◽  
Vincent Johnson ◽  
Lalith Perera ◽  
Sisunandar

Genetika ◽  
2004 ◽  
Vol 36 (3) ◽  
pp. 221-227
Author(s):  
Jelena Aleksic ◽  
Sasa Orlovic

Principles of the conservation of genetic resources of elms (Ulmus spp) do not differ fundamentally from the general principles accepted for the conservation of genetic resources of other common Noble Hardwoods. Efficient conservation can best be achieved through appropriate combination of in situ and ex situ methods, which have distinct advantages. Besides that, ex situ conservation is employed when emergency measures are needed for rare endangered populations and when populations are too small to be managed in situ (e.g. risks of genetic drift and inbreeding). The aim of our research is ex situ conservation of genetic resources of field elm {Ulmus minor Mill) and European white elm (Ulmus laevis Pall) through establishment of field genebanks. Sampling was conducted in one population of field elm and one population of white elm. Plant material (buds) from 8 trees of field elm and 10 trees of white elm was used for in vitro production of clones. Obtained clones will be used for establishment of field genebanks on the experimental estate of the Institute of Lowland Forestry and Environment.


AGROFOR ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zoran MALETIC

Recently, highly productive breeds of various species of domestic animals have been used in livestock production, which has resulted in the destruction of indigenous breeds of domestic animals around the world, even in our area. This is the first reason why indigenous races and strains have been endangered. Another reason is that domestic, indigenous breeds were crossed with specialized breeds, which were imported, and in that way their genetic diversity was negatively affected. Resistance is lost, adaptation to the conditions in which they were created, the ability to survive in nature. Indigenous breeds of different species of domestic animals, which are recognized in the Republic of Srpska (BiH) are gatačko cattle and buša (cattle), Vlašić pramenka, Podveleška pramenka, Kupres pramenka (sheep), domestic Balkan horned goat (goats), Bosnian mountain horse (horses), mangulica (pigs) and pogrmuša hen or živičarka hen (poultry). By acceding to international conventions, BiH /Republic of Srpska has committed itself to establishing a system of measures that will enable the conservation of biological diversity and the protection of indigenous and endangered breeds of domestic animals. The choice of a strategy for the conservation of diversity, the establishment of an adequate conservation scheme, and the implementation of a conservation strategy are some of the key elements of any process for the conservation of genetic diversity. Preservation of autochthonous and protected breeds of domestic animals is possible through preservation in the original environment (in situ) and preservation outside the original environment (ex situ). There is a possibility of combining these models of conservation of animal genetic resources.


2000 ◽  
Vol 14 (2) ◽  
pp. 382-385 ◽  
Author(s):  
L. M. Clayton ◽  
E. J. Milner‐Gulland ◽  
D. W. Sinaga ◽  
A. H. Mustari

Sign in / Sign up

Export Citation Format

Share Document