The endothelin-1 receptor antagonist BQ-123 reduces infarct size in a canine model of coronary occlusion and reperfusion

1993 ◽  
Vol 27 (9) ◽  
pp. 1613-1618 ◽  
Author(s):  
G. J Grover ◽  
S. Dzwonczyk ◽  
C. S Parham
2007 ◽  
Vol 293 (3) ◽  
pp. H1799-H1804 ◽  
Author(s):  
Bradley G. Leshnower ◽  
Hiroaki Sakamoto ◽  
Hirotsugu Hamamoto ◽  
Ahmad Zeeshan ◽  
Joseph H. Gorman ◽  
...  

It is widely accepted that, during acute coronary occlusion, ischemic cell death progresses from the subendocardium to the subepicardium in a wavefront fashion. This concept, which implies that the subendocardium is the most susceptible myocardial region to ischemic injury, was established using a canine model with an extensive system of subepicardial coronary collaterals. In humans, particularly in those with coronary artery disease, there is a wide range in the distribution and functional capacity of the collateral circulation, which may affect the pattern of infarct evolution. Using an ovine model with a limited system of preformed subendocardial coronary collaterals, we characterized the effect of increasing lengths of ischemia on regional blood flow and infarct size in three regions of the ventricular wall: subendocardium, midmyocardium, and subepicardium. Our results demonstrate that the myocardium and microvasculature in these three regions are equally susceptible to injury after 45 min of ischemia. When ischemic time is increased to 1 h, infarct size in the midmyocardium (90 ± 2%) is greater than in the subendocardium (76 ± 4%, P = 0.004) and subepicardium (84 ± 3%, P = 0.13). Microvascular dysfunction as assessed as a percentage of baseline flow is also greater in the midmyocardium (14 ± 5%) compared with the subendocardium (20 ± 3%, P = 0.23) and subepicardium (51 ± 9%, P = 0.007). These findings suggest that, in subjects with a limited system of coronary collateral circulation, the midmyocardium is the most susceptible myocardial region to ischemia and the subendocardium is the most resistant. Myocardial viability during coronary occlusion appears to be primarily determined by the distribution and functional capacity of the collateral circulation.


Circulation ◽  
1996 ◽  
Vol 94 (8) ◽  
pp. 1927-1933 ◽  
Author(s):  
Mark C.G. Horrigan ◽  
Andrew I. MacIsaac ◽  
Francesca A. Nicolini ◽  
D. Geoffrey Vince ◽  
Philmo Lee ◽  
...  

2000 ◽  
Vol 36 ◽  
pp. S314-S316 ◽  
Author(s):  
Béla Merkely ◽  
Tamás Szabó ◽  
László Gellér ◽  
Orsolya Kiss ◽  
Ferenc Horkay ◽  
...  

1993 ◽  
Vol 22 (1) ◽  
pp. 39-43 ◽  
Author(s):  
S. T. Bonvallet ◽  
M. Oka ◽  
M. Yano ◽  
M. R. Zamora ◽  
I. F. McMurtry ◽  
...  

1988 ◽  
Vol 12 (1) ◽  
pp. 209-217 ◽  
Author(s):  
James M Kinsman ◽  
Charles E Murry ◽  
Vincent J Richard ◽  
Robert B Jennings ◽  
Keith A Reimer

2006 ◽  
Vol 84 (11) ◽  
pp. 1185-1189 ◽  
Author(s):  
Doreen Richardt ◽  
Andreas Dendorfer ◽  
Ralph Tölg ◽  
Peter Dominiak ◽  
Gert Richardt

During myocardial ischemia, a substantial accumulation of norepinephrine occurs in the ischemic zone due to a local nonexocytotic release of norepinephrine. Norepinephrine release is driven by the neuronal monoamine transporter (NET), which reverses its usual transmembrane transport direction. We investigated whether this local accumulation of norepinephrine contributes to irreversible myocardial injury in an in vivo model of myocardial infarction. Male, anaesthetized Wistar rats were subjected to 30 min coronary occlusion and subsequent 120 min reperfusion. Five minutes prior to coronary occlusion, the NET inhibitor desipramine was administered intravenously. Infarct size (IS) was determined by TTC-staining and was related to the area at risk (AAR). The influence of desipramine on cardiac norepinephrine release was investigated in isolated perfused hearts with 30 min of regional ischemia. Norepinephrine was measured in the effluent from the hearts by HPLC and electrochemical detection. Desipramine (0.1–0.8 mg/kg) dose-dependently reduced infarct size (IS/AAR) from 0.54 to 0.21 and suppressed postischemic norepinephrine release from 245 to 108 pg/mL. In summary, the data indicate that nonexocytotic release of norepinephrine in myocardial ischemia exaggerates acute ischemic damage, because suppression of ischemia-induced release of norepinephrine by the tricyclic antidepressant desipramine effectively reduces infarct size in an in vivo model of myocardial ischemia.


Sign in / Sign up

Export Citation Format

Share Document