scholarly journals Moderated Poster Session - Heart245The involvement of TWEAK and FN14 in murine autoimmune myocarditis246Sympathetic neurons that innervate the heart locally modulate cardiomyocyte trophic and electrophysiological properties247W4R variant of CSRP3 leads to the expression of a novel alternate reading frame protein due to alternative splicing248Glucocorticoid intervention prenatally: effects on fetal heart maturation249Uncoupling of myofilament Ca2+-sensitivity from troponin I phosphorylation by hypertrophic and dilated cardiomyopathy mutations can be reversed by EGCG and related Hsp90 inhibitors250Investigating inherited HCM caused by SCO2 and PRKAG2 mutations using the patients' induced pluripotent stem cell-derived cardiomyocytes

2016 ◽  
Vol 111 (suppl 1) ◽  
pp. S46-S47 ◽  
Author(s):  
A Fischer ◽  
N Pianca ◽  
V Azzimato ◽  
E J Batchen ◽  
A E Messer ◽  
...  
2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Kimimasa Tobita ◽  
Jason S Tchao ◽  
Jong Kim ◽  
Bo Lin ◽  
Johnny Huard ◽  
...  

We have previously shown that rat skeletal muscle derived stem cells differentiate into an immature cardiomyocyte (CM) phenotype within a 3-dimensional collagen gel engineered cardiac tissue (ECT). Here, we investigated whether human skeletal muscle derived progenitor cells (skMDCs) can differentiate into a CM phenotype within ECT similar to rat skeletal muscle stem cells and compared the human skMDC-ECT properties with ECT from human induced pluripotent stem cell (iPSc) derived CMs. SkMDCs differentiated into a cardiac muscle phenotype within ECT and exhibited spontaneous beating activity as early as culture day 4 and maintained their activity for more than 2 weeks. SkMDC-ECTs stained positive for cardiac specific troponin-T and troponin-I, and were co-localized with fast skeletal muscle myosin heavy chain (sk-fMHC) with a striated muscle pattern similar to fetal myocardium. The iPS-CM-ECTs maintained spontaneous beating activity for more than 2 weeks from ECT construction. iPS-CM stained positive for both cardiac troponin-T and troponin-I, and were also co-localized with sk-fMHC while the striated expression pattern of sk-fMHC was lost similar to post-natal immature myocardium. Connexin-43 protein was expressed in both engineered tissue types, and the expression pattern was similar to immature myocardium. The skMDC-ECT significantly upregulated expression of cardiac-specific genes compared to conventional 2D culture. SkMDC-ECT displayed cardiac muscle like intracellular calcium ion transients. The contractile force measurements demonstrated functional properties of fetal type myocardium in both ECTs. Our results suggest that engineered human cardiac tissue from skeletal muscle progenitor cells mimics developing fetal myocardium while the engineered cardiac tissue from inducible pluripotent stem cell-derived cardiomyocytes mimics post-natal immature myocardium.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205719 ◽  
Author(s):  
Revital Schick ◽  
Lucy N. Mekies ◽  
Yuval Shemer ◽  
Binyamin Eisen ◽  
Tova Hallas ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (23) ◽  
pp. 2262-2275
Author(s):  
Anthony M. Pettinato ◽  
Feria A. Ladha ◽  
David J. Mellert ◽  
Nicholas Legere ◽  
Rachel Cohn ◽  
...  

Background: Pathogenic TNNT2 variants are a cause of hypertrophic and dilated cardiomyopathies, which promote heart failure by incompletely understood mechanisms. The precise functional significance for 87% of TNNT2 variants remains undetermined, in part, because of a lack of functional genomics studies. The knowledge of which and how TNNT2 variants cause hypertrophic and dilated cardiomyopathies could improve heart failure risk determination, treatment efficacy, and therapeutic discovery, and provide new insights into cardiomyopathy pathogenesis, as well. Methods: We created a toolkit of human induced pluripotent stem cell models and functional assays using CRISPR/Cas9 to study TNNT2 variant pathogenicity and pathophysiology. Using human induced pluripotent stem cell–derived cardiomyocytes in cardiac microtissue and single-cell assays, we functionally interrogated 51 TNNT2 variants, including 30 pathogenic/likely pathogenic variants and 21 variants of uncertain significance. We used RNA sequencing to determine the transcriptomic consequences of pathogenic TNNT2 variants and adapted CRISPR/Cas9 to engineer a transcriptional reporter assay to assist prediction of TNNT2 variant pathogenicity. We also studied variant-specific pathophysiology using a thin filament–directed calcium reporter to monitor changes in myofilament calcium affinity. Results: Hypertrophic cardiomyopathy–associated TNNT2 variants caused increased cardiac microtissue contraction, whereas dilated cardiomyopathy–associated variants decreased contraction. TNNT2 variant–dependent changes in sarcomere contractile function induced graded regulation of 101 gene transcripts, including MAPK (mitogen-activated protein kinase) signaling targets, HOPX , and NPPB . We distinguished pathogenic TNNT2 variants from wildtype controls using a sarcomere functional reporter engineered by inserting tdTomato into the endogenous NPPB locus. On the basis of a combination of NPPB reporter activity and cardiac microtissue contraction, our study provides experimental support for the reclassification of 2 pathogenic/likely pathogenic variants and 2 variants of uncertain significance. Conclusions: Our study found that hypertrophic cardiomyopathy–associated TNNT2 variants increased cardiac microtissue contraction, whereas dilated cardiomyopathy–associated variants decreased contraction, both of which paralleled changes in myofilament calcium affinity. Transcriptomic changes, including NPPB levels, directly correlated with sarcomere function and can be used to predict TNNT2 variant pathogenicity.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Haodi Wu ◽  
Jaecheol Lee ◽  
Mingxia Gu ◽  
Feng Lan ◽  
Jared Churko ◽  
...  

Introduction: Familial dilated cardiomyopathy (DCM) has been modeled by human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). However, the mechanisms of compromised signaling transduction and contractile function in DCM iPSC-CMs are still not well understood. Methods and Results: Beating iPSC-CMs were generated from healthy individuals and DCM patients. RNA-seq and real-time PCR showed strict regulation of the main beta-adrenergic signaling proteins in iPSC-CMs during maturation. Confocal imaging of spontaneous calcium activity and hydrogel-based traction force microscopy (TFM) technology demonstrated beta-adrenergic stimulation induced both inotropic and chronotropic regulation in the contractility of iPSC-CMs. Following extended in vitro maturation of iPSC-CMs, we observed a transition in the beta-adrenergic receptor (beta-AR) subtype dependence from beta-2 AR dominance at early stage (day 30) to beta-1/2 AR co-existence at late stage (day 60). Comparison of the beta-adrenergic responsiveness between iPSC-CMs from DCM patients and their familial controls showed compromised beta-adrenergic signaling in DCM cells. Microarray data and expression profiling indicated up-regulated phosphodiesterases (PDE) 2A, 3A and 5A in DCM iPSC-CMs, which impaired cAMP generation and blunted the beta-adrenergic response. By blocking PDE2A, 3A or 5A, beta-adrenergic signaling reactivity and contractile function in DCM iPSC-CMs were both greatly improved. To further elucidate underlying mechanism of PDE regulation, we conducted chromatin immunoprecipitation (CHIP) assays, which showed significant up-regulation of activation histone marker and down-regulation of repressive histone marker in the PDE promoters during maturation process of DCM iPSC-CMs, which closely recapitulated the epigenetic modulation in the ventricle tissues harvested from DCM patients. Conclusions: Patient-specific DCM iPSC-CMs recapitulated impaired beta-adrenergic responsiveness and contractility in diseased heart. Studies on iPSC-CM model revealed a novel epigenetic mechanism that underlies PDE subtype specific regulation and signaling deficiency in DCM pathogenesis, which may serve as a new therapeutic target in the future.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Kota Suzuki ◽  
Shigeru Miyagawa ◽  
Emiko Ito ◽  
Akima Harada ◽  
Takuji Kawamura ◽  
...  

Introduction: The progression of dilated cardiomyopathy (DCM) mainly involves genetic mutations or ischemia at the cellular level, leading to microvascular dysfunction associated with cell death, interstitial fibrosis, and high wall stress. Radical treatment of DCM requires how to ameliorate its microcirculation and integrate cardiomyocytes created ex vivo into recipient myocardium. Hypothesis: The induced pluripotent stem cell derived cardiomyocyte sheets (iPS-sheet) has therapeutic potential by the improvement of microcirculation in a porcine DCM model. Methods: The iPS-sheets were generated from clinical grade human iPS cells. A DCM model was created by tachycardia pacing, and iPS-sheet was transplanted with immunosuppressive agents 1 month after the initiation of the pacing. We compared the therapeutic efficacy functionally and pathologically between the iPS-sheet transplant group (iPS-group) and the sham group after 1 month of transplantation. Results: On echocardiography, the iPS group showed a significant improvement in contractility compared to the sham group (LVEF 4 weeks after transplantation iPS vs. sham 49.0±6.5% vs. 36.4±3.3%, p<0.05, Figure A). Pressure-volume loop analysis revealed that a significant decrease in left ventricular end diastolic pressure and an improvement in end-systolic pressure-volume relationship in the iPS group (Figure B). Ammonia PET showed improvement in myocardial blood flow at both rest and stress in iPS group (Figure C). Histological analysis revealed that the density of CD31-positive capillaries in transplanted area was significantly greater in the iPS group than the sham group. Immunostaining revealed iPS-sheet were detected on the epicardium of the distressed myocardium (Figure D). Conclusions: The iPS sheet showed engraftment in distressed myocardium, leading to amelioration in cardiac function through improving microcirculation with angiogenesis in porcine DCM model.


Sign in / Sign up

Export Citation Format

Share Document