Abstract 212: Hypertrophic Cardiomyopathy Mutations With Opposite Effects on ß-myosin Biomechanics Show Similar Structural and Biomechanical Phenotypes in Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (hipsc-cms)

2019 ◽  
Vol 125 (Suppl_1) ◽  
Author(s):  
Alison Schroer ◽  
Guanghyun Jung ◽  
Kristina Kooiker ◽  
Arjun Adhikari ◽  
Linda Song ◽  
...  
Circulation ◽  
2020 ◽  
Vol 142 (23) ◽  
pp. 2262-2275
Author(s):  
Anthony M. Pettinato ◽  
Feria A. Ladha ◽  
David J. Mellert ◽  
Nicholas Legere ◽  
Rachel Cohn ◽  
...  

Background: Pathogenic TNNT2 variants are a cause of hypertrophic and dilated cardiomyopathies, which promote heart failure by incompletely understood mechanisms. The precise functional significance for 87% of TNNT2 variants remains undetermined, in part, because of a lack of functional genomics studies. The knowledge of which and how TNNT2 variants cause hypertrophic and dilated cardiomyopathies could improve heart failure risk determination, treatment efficacy, and therapeutic discovery, and provide new insights into cardiomyopathy pathogenesis, as well. Methods: We created a toolkit of human induced pluripotent stem cell models and functional assays using CRISPR/Cas9 to study TNNT2 variant pathogenicity and pathophysiology. Using human induced pluripotent stem cell–derived cardiomyocytes in cardiac microtissue and single-cell assays, we functionally interrogated 51 TNNT2 variants, including 30 pathogenic/likely pathogenic variants and 21 variants of uncertain significance. We used RNA sequencing to determine the transcriptomic consequences of pathogenic TNNT2 variants and adapted CRISPR/Cas9 to engineer a transcriptional reporter assay to assist prediction of TNNT2 variant pathogenicity. We also studied variant-specific pathophysiology using a thin filament–directed calcium reporter to monitor changes in myofilament calcium affinity. Results: Hypertrophic cardiomyopathy–associated TNNT2 variants caused increased cardiac microtissue contraction, whereas dilated cardiomyopathy–associated variants decreased contraction. TNNT2 variant–dependent changes in sarcomere contractile function induced graded regulation of 101 gene transcripts, including MAPK (mitogen-activated protein kinase) signaling targets, HOPX , and NPPB . We distinguished pathogenic TNNT2 variants from wildtype controls using a sarcomere functional reporter engineered by inserting tdTomato into the endogenous NPPB locus. On the basis of a combination of NPPB reporter activity and cardiac microtissue contraction, our study provides experimental support for the reclassification of 2 pathogenic/likely pathogenic variants and 2 variants of uncertain significance. Conclusions: Our study found that hypertrophic cardiomyopathy–associated TNNT2 variants increased cardiac microtissue contraction, whereas dilated cardiomyopathy–associated variants decreased contraction, both of which paralleled changes in myofilament calcium affinity. Transcriptomic changes, including NPPB levels, directly correlated with sarcomere function and can be used to predict TNNT2 variant pathogenicity.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Haodi Wu ◽  
Huaxiao Yang ◽  
Joe Zhang ◽  
Chi Keung Lam ◽  
June-Wha Rhee ◽  
...  

Background: Diastolic dysfunction is commonly seen in hypertrophic cardiomyopathy (HCM). However, the cellular mechanism is not fully understood, and no effective treatment so far has been developed. We hypothesize here that HCM patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) can recapitulate the cellular mechanism, and provide us a platform for mechanistic study and for drug screening of diastolic dysfunctions in HCM. Methods and Results: We generated beating iPSC-CMs from healthy individuals and HCM patients carrying familial mutations (MYH7 R663H (n=2 lines) and MYBPC3 R943ter (n=2 lines)). Sarcomere shortening measurement in patterned iPSC-CMs with live cell confocal imaging showed significantly prolonged diastolic phase and slower relaxation velocity in HCM iPSC-CMs compared to WT cells. To elucidate the cellular mechanism, Fura-2 AM ratiometric calcium imaging showed marked elevation of resting calcium level and increased abnormal calcium handlings in HCM iPSC-CMs, which were exaggerated by β-adrenergic activation with isoproterenol. By applying calcium transient and contractile force simultaneous recording, we defined a “risk index of diastolic dysfunction” (measured as transient-contraction gain factor), which was significantly increased in HCM iPSC-CMs. Thus, both elevated basal calcium level and increased calcium sensitivity of myofilament contribute to the abnormal diastolic function in HCM iPSC-CMs. Gene expression profiling of HCM and WT iPSC-CMs indicated that increased calcium channels may underlie the increased basal calcium concentration in HCM cells. Indeed, partially blocking the calcium influx by calcium blockers reset the basal calcium level, attenuated calcium mishandling, and restored the diastolic function in HCM iPSC-CMs. Moreover, re-balancing calcium homeostasis significantly improved long-term survival rate of HCM iPSC-CMs at both basal level and under β-adrenergic stress. Conclusion: The iPSC-CM models carrying patient-specific HCM mutations recapitulated diastolic dysfunction on single cell level. Future studies using these platform may reveal additional novel cellular mechanisms and therapeutic targets of diastolic dysfunction in HCM disease.


Sign in / Sign up

Export Citation Format

Share Document