scholarly journals Frequency-dependent flight activity in the colour polymorphic wood tiger moth

2015 ◽  
Vol 61 (4) ◽  
pp. 765-772 ◽  
Author(s):  
Bibiana Rojas ◽  
Armando Luis-MartÍnez ◽  
Johanna Mappes

Abstract Predators efficiently learn to avoid one type of warning signal rather than several, making colour polymorphisms unexpected. Aposematic wood tiger moth males Parasemia plantaginis have either white or yellow hindwing coloration across Europe. Previous studies indicate that yellow males are better defended from predators, while white males have a positively frequency-dependent mating advantage. However, the potential frequency-dependent behavioural differences in flight between the morphs, as well as the role of male-male interactions in inducing flying activity, have not been previously considered. We ran an outdoor cage experiment where proportions of both male morphs were manipulated to test whether flying activity was frequencydependent and differed between morphs. The white morph was significantly more active than the yellow one across all treatments, and sustained activity for longer. Overall activity for both morphs was considerably lower in the yellow-biased environment, suggesting that higher proportions of yellow males in a population may lead to overall reduced flying activity. The activity of the yellow morph also followed a steeper, narrower curve than that of the white morph during peak female calling activity. We suggest that white males, with their presumably less costly defences, have more resources to invest in flight for predator escape and finding mates. Yellow males, which are better protected but less sexually selected, may instead compensate their lower flight activity by ‘flying smart’ during the peak female-calling periods. Thus, both morphs may be able to behaviourally balance the trade-off between warning signal selection and sexual selection. Our results emphasize the greater need to investigate animal behaviour and colour polymorphisms in natural or semi-natural environments.

2011 ◽  
Vol 279 (1727) ◽  
pp. 257-265 ◽  
Author(s):  
Ossi Nokelainen ◽  
Robert H. Hegna ◽  
Joanneke H. Reudler ◽  
Carita Lindstedt ◽  
Johanna Mappes

The coloration of species can have multiple functions, such as predator avoidance and sexual signalling, that directly affect fitness. As selection should favour traits that positively affect fitness, the genes underlying the trait should reach fixation, thereby preventing the evolution of polymorphisms. This is particularly true for aposematic species that rely on coloration as a warning signal to advertise their unprofitability to predators. Nonetheless, there are numerous examples of aposematic species showing remarkable colour polymorphisms. We examined whether colour polymorphism in the wood tiger moth is maintained by trade-offs between different functions of coloration. In Finland, males of this species have two distinct colour morphs: white and yellow. The efficacy of the warning signal of these morphs was tested by offering them to blue tits in the laboratory. Birds hesitated significantly longer to attack yellow than white males. In a field experiment, the survival of the yellow males was also higher than white males. However, mating experiments in the laboratory revealed that yellow males had lower mating success than white males. Our results offer an explanation for the maintenance of polymorphism via trade-off between survival selection and mating success.


2014 ◽  
Vol 23 (20) ◽  
pp. 4939-4957 ◽  
Author(s):  
Juan A. Galarza ◽  
Ossi Nokelainen ◽  
Roghaeih Ashrafi ◽  
Robert H. Hegna ◽  
Johanna Mappes

2013 ◽  
Vol 280 (1755) ◽  
pp. 20122812 ◽  
Author(s):  
Robert H. Hegna ◽  
Ossi Nokelainen ◽  
Jonathan R. Hegna ◽  
Johanna Mappes

Melanin production is often considered costly, yet beneficial for thermoregulation. Studies of variation in melanization and the opposing selective forces that underlie its variability contribute greatly to understanding natural selection. We investigated whether melanization benefits are traded off with predation risk to promote observed local and geographical variation in the warning signal of adult male wood tiger moths ( Parasemia plantaginis ). Warning signal variation is predicted to reduce survival in aposematic species. However, in P. plantaginis , male hindwings are either yellow or white in Europe, and show continuous variation in melanized markings that cover 20 to 90 per cent of the hindwing. We found that the amount of melanization increased from 40 to 59 per cent between Estonia (58° N) and north Finland (67° N), suggesting melanization carries thermoregulatory benefits. Our thermal measurements showed that more melanic individuals warmed up more quickly on average than less melanic individuals, which probably benefits flight in cold temperatures. With extensive field experiments in central Finland and the Alpine region, we found that more melanic individuals suffered increased predation. Together, our data suggest that warning signal efficiency is constrained by thermoregulatory benefits. Differences in relative costs and benefits of melanin probably help to maintain the geographical warning signal differences.


Author(s):  
Wei-Wei Zhang ◽  
Rong-Rong Li ◽  
Jie Zhang ◽  
Jie Yan ◽  
Qian-Hui Zhang ◽  
...  

AbstractWhile the hippocampus has been implicated in supporting the association among time-separated events, the underlying cellular mechanisms have not been fully clarified. Here, we combined in vivo multi-channel recording and optogenetics to investigate the activity of hippocampal interneurons in freely-moving mice performing a trace eyeblink conditioning (tEBC) task. We found that the hippocampal interneurons exhibited conditioned stimulus (CS)-evoked sustained activity, which predicted the performance of conditioned eyeblink responses (CRs) in the early acquisition of the tEBC. Consistent with this, greater proportions of hippocampal pyramidal cells showed CS-evoked decreased activity in the early acquisition of the tEBC. Moreover, optogenetic suppression of the sustained activity in hippocampal interneurons severely impaired acquisition of the tEBC. In contrast, suppression of the sustained activity of hippocampal interneurons had no effect on the performance of well-learned CRs. Our findings highlight the role of hippocampal interneurons in the tEBC, and point to a potential cellular mechanism subserving associative learning.


2021 ◽  
Author(s):  
Curtis M Lively ◽  
Julie Xu ◽  
Frida Ben-Ami

Parasite-mediated selection is thought to maintain host genetic diversity for resistance. We might thus expect to find a strong positive correlation between host genetic diversity and infection prevalence across natural populations. Here we used computer simulations to examine host-parasite coevolution in 20 simi-isolated clonal populations across a broad range of values for both parasite virulence and parasite fecundity. We found that the correlation between host genetic diversity and infection prevalence can be significantly positive for intermediate values of parasite virulence and fecundity. But the correlation can also be weak and statistically non-significant, even when parasite-mediated frequency-dependent selection is the sole force maintaining host diversity. Hence correlational analyses of field populations, while useful, might underestimate the role of parasites in maintaining host diversity.


2019 ◽  
Author(s):  
Caroline B. Turner ◽  
Sean W. Buskirk ◽  
Katrina B. Harris ◽  
Vaughn S. Cooper

AbstractNatural environments are rarely static; rather selection can fluctuate on time scales ranging from hours to centuries. However, it is unclear how adaptation to fluctuating environments differs from adaptation to constant environments at the genetic level. For bacteria, one key axis of environmental variation is selection for planktonic or biofilm modes of growth. We conducted an evolution experiment with Burkholderia cenocepacia, comparing the evolutionary dynamics of populations evolving under constant selection for either biofilm formation or planktonic growth with populations in which selection fluctuated between the two environments on a weekly basis. Populations evolved in the fluctuating environment shared many of the same genetic targets of selection as those evolved in constant biofilm selection, but were genetically distinct from the constant planktonic populations. In the fluctuating environment, mutations in the biofilm-regulating genes wspA and rpfR rose to high frequency in all replicate populations. A mutation in wspA first rose rapidly and nearly fixed during the initial biofilm phase but was subsequently displaced by a collection of rpfR mutants upon the shift to the planktonic phase. The wspA and rpfR genotypes coexisted via negative frequency-dependent selection around an equilibrium frequency that shifted between the environments. The maintenance of coexisting genotypes in the fluctuating environment was unexpected. Under temporally fluctuating environments coexistence of two genotypes is only predicted under a narrow range of conditions, but the frequency-dependent interactions we observed provide a mechanism that can increase the likelihood of coexistence in fluctuating environments.


2008 ◽  
Vol 294 (5) ◽  
pp. H2352-H2362 ◽  
Author(s):  
Andreas A. Werdich ◽  
Eduardo A. Lima ◽  
Igor Dzhura ◽  
Madhu V. Singh ◽  
Jingdong Li ◽  
...  

In cardiac myocytes, the activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is hypothesized to regulate Ca2+ release from and Ca2+ uptake into the sarcoplasmic reticulum via the phosphorylation of the ryanodine receptor 2 and phospholamban (PLN), respectively. We tested the role of CaMKII and PLN on the frequency adaptation of cytosolic Ca2+ concentration ([Ca2+]i) transients in nearly 500 isolated cardiac myocytes from transgenic mice chronically expressing a specific CaMKII inhibitor, interbred into wild-type or PLN null backgrounds under physiologically relevant pacing conditions (frequencies from 0.2 to 10 Hz and at 37°C). When compared with that of mice lacking PLN only, the combined chronic CaMKII inhibition and PLN ablation decreased the maximum Ca2+ release rate by more than 50% at 10 Hz. Although PLN ablation increased the rate of Ca2+ uptake at all frequencies, its combination with CaMKII inhibition did not prevent a frequency-dependent reduction of the amplitude and the duration of the [Ca2+]i transient. High stimulation frequencies in the physiological range diminished the effects of PLN ablation on the decay time constant and on the maximum decay rate of the [Ca2+]i transient, indicating that the PLN-mediated feedback on [Ca2+]i removal is limited by high stimulation frequencies. Taken together, our results suggest that in isolated mouse ventricular cardiac myocytes, the combined chronic CaMKII inhibition and PLN ablation slowed Ca2+ release at physiological frequencies: the frequency-dependent decay of the amplitude and shortening of the [Ca2+]i transient occurs independent of chronic CaMKII inhibition and PLN ablation, and the PLN-mediated regulation of Ca2+ uptake is diminished at higher stimulation frequencies within the physiological range.


Author(s):  
Hung-Pin Hsu

Parks and green spaces have been allocated for city residents to offer them healthier natural environments. However, people living in cities may have less opportunity to engage with the natural environment since parks seem to be passive locations of activity. We investigated how to proactively enhance the attraction of green space to improve people's health. First, we surveyed how 683 city residents were engaged in physical activities. From them, 30 people were recruited for depth interviews. Results showed that the park environment and the health activities that feature ‘inner-attraction' could enhance the frequency and persistence of the city residents to engage in healthy activities. We also evaluated the service experience and attraction of 40 users in a 3-month program in the Daan Forest Park of Taipei City in Taiwan. Using the culture probes method, we found that the experience cycle and the use of social media enhanced the park's inner and inter attraction, and that the role of the park was transformed from a passive green space provider to an active service operator.


2019 ◽  
Vol 29 (Supplement_4) ◽  
Author(s):  
C Macdougall ◽  
L Gibbs

Abstract Background In February 2009 Victorian rural communities were hit by the worst bushfires in Australian history. Immediately we evaluated community groups preparing residents for bushfires. Ten years on, we are one of the few teams to evaluate medium to long term community recovery using multiple methods. As climate change becomes more visible, the frequency and intensity of disasters will increase so communities, governments and service providers need more evidence based strategies and policies. We explore how participant led visual methods provide new knowledge. Methods In study 1 participants in 3 of 7 focus groups in peoples’ homes spontaneously brought photos for us to examine before the discussions. In another participants spoke of the importance of photos they took at the time. We returned to the field to interview people in their homes about the meaning and role of photos. Results Participants wanted to inform us-as outsiders-of the awe and enormity of the fires. They created a visual record to communicate with key interest groups and ward off complacity as memories receded. Photos helped them construct timelines and meanings of the intense fires. Crucially, they recorded recovery and rebuilding in both the built and natural environments. Over the next ten years we chronicled stories from community led visual methods of communication, recovery and empowerment. We incorporated into qualitative methods participant led tours of their environments, with visual methods. Visual data collected by communities focused more strongly on the natural environment than researcher led verbal methods. Conclusions Visual sociology changes as technology provides participants in research with increased access to, and control over, visual methods. These changes can rebalance power relations between qualitative researchers and participants and bridge visual and verbal methods; crafting striking stories to influence those Australian policies unresponsive to climate change. Key messages Technological change enables participants in qualitative research to initiate visual methods to build bridges between them and researchers. Community led visual methods provide new types of data useful for theory and knowledge translation.


Sign in / Sign up

Export Citation Format

Share Document