scholarly journals Nucleotide Sequence of the psbP Gene Encoding Precursor of 23-kDa Polypeptide of Oxygen-Evolving Complex in Arabidopsis thaliana and its Expression in the Wild-Type and a Constitutively Photomorphogenic Mutant

DNA Research ◽  
1996 ◽  
Vol 3 (5) ◽  
pp. 277-285 ◽  
Author(s):  
A. Kochhar
2021 ◽  
Author(s):  
Benjamin Spaniol ◽  
Julia Lang ◽  
Benedikt Venn ◽  
Lara Schake ◽  
Frederik K Sommer ◽  
...  

We have identified the homolog of LOW PSII ACCUMULATION 2 (LPA2) in Chlamydomonas. A Chlamydomonas lpa2 mutant grew slower in low light and was hypersensitive to high light. PSII maximum quantum efficiency was reduced by 38%. Synthesis and stability of newly made PSII core subunits D1, D2, CP43, and CP47 were not impaired. Complexome profiling revealed that in the mutant CP43 was reduced to ~23%, D1, D2, and CP47 to ~30% of wild-type levels, while small PSII core subunits and components of the oxygen evolving complex were reduced at most by factor two. PSII supercomplexes, dimers, and monomers were reduced to 7%, 26%, and 60% of wild-type levels, while RC47 was increased ~6-fold. Our data indicate that LPA2 acts at a step during PSII assembly without which PSII monomers and especially further assemblies become intrinsically unstable and prone to degradation. Levels of ATP synthase and LHCII were 29% and 27% higher in the mutant than in the wild type, whereas levels of the cytochrome b6f complex were unaltered. While the abundance of PSI core subunits and antennae hardly changed, LHCI antennae were more disconnected in the lpa2 mutant, presumably as an adaptive response to reduce excitation of PSI. The disconnection of LHCA2,9 together with PSAH and PSAG was the prime response, but independent and additional disconnection of LHCA1,3-8 along with PSAK occurred as well. Finally, based on co-migration profiles, we identified three novel putative PSII associated proteins with potential roles in regulating PSII complex dynamics, assembly, and chlorophyll breakdown.


1988 ◽  
Vol 106 (3) ◽  
pp. 609-616 ◽  
Author(s):  
P Malnoë ◽  
S P Mayfield ◽  
J D Rochaix

Expression of the genes of the photosystem II (PSII) core polypeptides D1 and D2, of three proteins of the oxygen evolving complex of PSII and of the light harvesting chlorophyll a/b binding proteins (LHCP) has been compared in wild-type (wt) and in the y-1 mutant of Chlamydomonas reinhardtii. Since wt, but not y-1 cells produce a fully developed photosynthetic system in the dark, comparison of the two has allowed us to distinguish the direct effect of light from the influence of plastid development on gene expression. The PSII core polypeptides and LHCP are nearly undetectable in dark-grown y-1 cells but they accumulate progressively during light induced greening. The levels of these proteins in wt are the same in the light and the dark. The amounts of the proteins of the oxygen evolving complex do not change appreciably in the light or in the dark for both wt and y-1. Steady state levels of chloroplast mRNA encoding the core PSII polypeptides remain nearly constant in the light or the dark and are not affected by the developmental stage of the plastid. Levels of nuclear encoded mRNAs for the oxygen evolving proteins and of LHCP increase during light growth in wt and y-1. In contrast to wt, synthesis of LHCP proteins is not detectable in y-1 cells in the dark but starts immediately after transfer to light, indicating that LHCP synthesis is controlled by a light-induced factor or process. While the rates of synthesis of D1 and D2 are immediately enhanced by light in wt, this increase occurs only after a lag in y-1 and thus must be dependent on an early light-induced event in the plastid. These results show that the biosynthesis of PSII is affected by light directly, by the stage of plastid development, and by the interaction of light and events associated with plastid development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Francisco Cruz-Pérez ◽  
Roxana Lara-Oueilhe ◽  
Cynthia Marcos-Jiménez ◽  
Ricardo Cuatlayotl-Olarte ◽  
María Luisa Xiqui-Vázquez ◽  
...  

AbstractThe plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.


Science ◽  
2013 ◽  
Vol 341 (6150) ◽  
pp. 1103-1106 ◽  
Author(s):  
Ruben Vanholme ◽  
Igor Cesarino ◽  
Katarzyna Rataj ◽  
Yuguo Xiao ◽  
Lisa Sundin ◽  
...  

Lignin is a major component of plant secondary cell walls. Here we describe caffeoyl shikimate esterase (CSE) as an enzyme central to the lignin biosynthetic pathway. Arabidopsis thaliana cse mutants deposit less lignin than do wild-type plants, and the remaining lignin is enriched in p-hydroxyphenyl units. Phenolic metabolite profiling identified accumulation of the lignin pathway intermediate caffeoyl shikimate in cse mutants as compared to caffeoyl shikimate levels in the wild type, suggesting caffeoyl shikimate as a substrate for CSE. Accordingly, recombinant CSE hydrolyzed caffeoyl shikimate into caffeate. Associated with the changes in lignin, the conversion of cellulose to glucose in cse mutants increased up to fourfold as compared to that in the wild type upon saccharification without pretreatment. Collectively, these data necessitate the revision of currently accepted models of the lignin biosynthetic pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tatiana P. Fedorchuk ◽  
Inga A. Kireeva ◽  
Vera K. Opanasenko ◽  
Vasily V. Terentyev ◽  
Natalia N. Rudenko ◽  
...  

We studied bicarbonate-induced stimulation of photophosphorylation in thylakoids isolated from leaves of Arabidopsis thaliana plants. This stimulation was not observed in thylakoids of wild-type in the presence of mafenide, a soluble carbonic anhydrase inhibitor, and was absent in thylakoids of two mutant lines lacking the gene encoding alpha carbonic anhydrase 5 (αCA5). Using mass spectrometry, we revealed the presence of αCA5 in stromal thylakoid membranes of wild-type plants. A possible mechanism of the photophosphorylation stimulation by bicarbonate that involves αCA5 is proposed.


Virology ◽  
2002 ◽  
Vol 295 (2) ◽  
pp. 307-319 ◽  
Author(s):  
Truus E.M. Abbink ◽  
Jack R. Peart ◽  
Thera N.M. Mos ◽  
David C. Baulcombe ◽  
John F. Bol ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document