scholarly journals Alpha Carbonic Anhydrase 5 Mediates Stimulation of ATP Synthesis by Bicarbonate in Isolated Arabidopsis Thylakoids

2021 ◽  
Vol 12 ◽  
Author(s):  
Tatiana P. Fedorchuk ◽  
Inga A. Kireeva ◽  
Vera K. Opanasenko ◽  
Vasily V. Terentyev ◽  
Natalia N. Rudenko ◽  
...  

We studied bicarbonate-induced stimulation of photophosphorylation in thylakoids isolated from leaves of Arabidopsis thaliana plants. This stimulation was not observed in thylakoids of wild-type in the presence of mafenide, a soluble carbonic anhydrase inhibitor, and was absent in thylakoids of two mutant lines lacking the gene encoding alpha carbonic anhydrase 5 (αCA5). Using mass spectrometry, we revealed the presence of αCA5 in stromal thylakoid membranes of wild-type plants. A possible mechanism of the photophosphorylation stimulation by bicarbonate that involves αCA5 is proposed.

2019 ◽  
Vol 116 (52) ◽  
pp. 27115-27123 ◽  
Author(s):  
Huiying Miao ◽  
Rongfang Guo ◽  
Junlin Chen ◽  
Qiaomei Wang ◽  
Yuh-Ru Julie Lee ◽  
...  

γ-Tubulin typically forms a ring-shaped complex with 5 related γ-tubulin complex proteins (GCP2 to GCP6), and this γ-tubulin ring complex (γTuRC) serves as a template for microtubule (MT) nucleation in plants and animals. While the γTuRC takes part in MT nucleation in most eukaryotes, in fungi such events take place robustly with just the γ-tubulin small complex (γTuSC) assembled by γ-tubulin plus GCP2 and GCP3. To explore whether the γTuRC is the sole functional γ-tubulin complex in plants, we generated 2 mutants of theGCP6gene encoding the largest subunit of the γTuRC inArabidopsis thaliana. Both mutants showed similar phenotypes of dwarfed vegetative growth and reduced fertility. Thegcp6mutant assembled the γTuSC, while the wild-type cells had GCP6 join other GCPs to produce the γTuRC. Although thegcp6cells had greatly diminished γ-tubulin localization on spindle MTs, the protein was still detected there. Thegcp6cells formed spindles that lacked MT convergence and discernable poles; however, they managed to cope with the challenge of MT disorganization and were able to complete mitosis and cytokinesis. Our results reveal that the γTuRC is not the only functional form of the γ-tubulin complex for MT nucleation in plant cells, and that γ-tubulin-dependent, but γTuRC-independent, mechanisms meet the basal need of MT nucleation. Moreover, we show that the γTuRC function is more critical for the assembly of spindle MT array than for the phragmoplast. Thus, our findings provide insight into acentrosomal MT nucleation and organization.


1994 ◽  
Vol 105 (1) ◽  
pp. 449-449 ◽  
Author(s):  
H. J. Kim ◽  
M. H. Bracey ◽  
S. G. Bartlett

2006 ◽  
Vol 87 (8) ◽  
pp. 2397-2401 ◽  
Author(s):  
Koki Fujisaki ◽  
Gerald B. Ravelo ◽  
Satoshi Naito ◽  
Masayuki Ishikawa

The TOM1 and TOM3 genes of Arabidopsis thaliana encode homologous proteins that are required for tobamovirus multiplication. Although the A. thaliana genome encodes another TOM1-like gene, THH1, the tobamovirus coat protein (CP) does not accumulate to a detectable level in the tom1 tom3 double mutant. Here, double and triple mutants of tom1, tom3 and thh1 were generated to investigate whether THH1 functions to support tobamovirus multiplication. In the tom1 thh1 double mutant, the tobamovirus CP accumulated to a level that was detectable, but lower than that in the tom1 single mutant. In tom1 tom3 double-mutant lines overexpressing THH1, the tobamovirus CP accumulated to a level similar to that observed in wild-type plants. These results suggest that THH1 supports tobamovirus multiplication, but to a lesser extent than TOM1 and TOM3. The expression level of THH1 is lower than that of TOM1 and TOM3, which might explain the smaller contribution of THH1 to tobamovirus multiplication.


Genetics ◽  
1997 ◽  
Vol 145 (1) ◽  
pp. 197-205 ◽  
Author(s):  
Alan B Rose ◽  
Jiayang Li ◽  
Robert L Last

Nine blue fluorescent mutants of the flowering plant Arabidopsis thaliana were isolated by genetic selections and fluorescence screens. Each was shown to contain a recessive allele of trp1, a previously described locus that encodes the tryptophan biosynthetic enzyme phosphoribosylanthranilate transferase (PAT, called trpD in bacteria). The trp1 mutants consist of two groups, tryptophan auxotrophs and prototrophs, that differ significantly in growth rate, morphology, and fertility. The trp1 alleles cause plants to accumulate varying amounts of blue fluorescent anthranilate compounds, and only the two least severely affected of the prototrophs have any detectable PAT enzyme activity. All four of the trp1 mutations that were sequenced are G to A or C to T transitions that cause an amino acid change, but in only three of these is the affected residue phylogenetically conserved. There is an unusually high degree of sequence divergence in the single-copy gene encoding PAT from the wild-type Columbia and Landsberg erecta ecotypes of Arabidopsis.


2005 ◽  
Vol 60 (3-4) ◽  
pp. 272-278 ◽  
Author(s):  
Mami Kurumata ◽  
Misa Takahashi ◽  
Atsushi Sakamoto ◽  
Juan L. Ramos ◽  
Ales Nepovim ◽  
...  

Abstract Arabidopsis thaliana was transformed with a gene encoding a nitroreductase (NTR, E.C. 1.6.99.7) with activity against a wide range of nitroaromatic compounds. The gene was transferred from Escherichia coli by an Agrobacterium-mediated in planta method. The ob­tained seeds were sowed to produce T1 plants, and they were assayed for the integration of the transgene in the plant genome. Transgenic plants that were positive with the PCR analysis were self-pollinated to produce T2 generation plants. Seven lines obtained were assayed for the NTR activity. While the noil-transformed wild-type plants showed no detectable NTR activity, the enzyme activity of the transgenic plant lines was approx. 20 times higher. Using the line with the highest NTR activity, the phytoremediation characteristics of plants against 2,4,6-trinitrotoluene (TNT) was investigated. While the wild-type plants did not grow in the presence of 0.1 mᴍ TNT, the transgenic plants grew almost normally in this condition. The uptake of TNT by seedlings of transgenic plants increased by 7 to 8 times when they were floated on TNT solution. HPLC analysis showed that the peak due to TNT taken up into plant body was much smaller in the transgenic plants as compared with that of the wild type, and that a number of peaks attributable to the degradation products of TNT, including 4-amino-2,6-dinitrotoluene, were detected in the extract from the transgenic plants. This indi­cates that the expression of bacterial NTR improved the capability of plants to degrade TNT.


Author(s):  
Talisa K. Silzer ◽  
Christopher Todd

The relationship between nitrogen availability and presence of heavy metal stress appear to affect development and growth of Arabidopsis thaliana plants. In this work, Arabidopsis thaliana seedlings were exposed to media containing varying concentrations of nitrogen in form of NH4NO3 or KNO3 and cadmium in the form of CdCl2. When exposed to increasing cadmium stress, aln mutant lines, lacking a functional allantoinase enzyme, displayed enhanced growth and development when compared to wild type, most likely due to their high allantoin content. Increasing nitrogen concentrations appeared to decrease the amount of senescing tissue caused by exposure to cadmium stress. Growth appeared to be slightly increased in both wild type and aln mutant lines grown in media containing KNO3 as the nitrogen source, thereby supporting the importance of nitrogen source on plant growth.


2002 ◽  
Vol 404 (2) ◽  
pp. 197-209 ◽  
Author(s):  
Roger S Rowlett ◽  
Chingkuang Tu ◽  
Melissa M McKay ◽  
Jeffrey R Preiss ◽  
Rebecca J Loomis ◽  
...  

1992 ◽  
Vol 84 (4) ◽  
pp. 561-567 ◽  
Author(s):  
Poul E. Jensen ◽  
Michael Kristensen ◽  
Tine Hoff ◽  
Jan Lehmbeck ◽  
Bjarne M. Stummann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document