scholarly journals Renin–angiotensin system blockers, risk of SARS-CoV-2 infection and outcomes from CoViD-19: systematic review and meta-analysis

Author(s):  
Matthew M Y Lee ◽  
Kieran F Docherty ◽  
Naveed Sattar ◽  
Neil Mehta ◽  
Ankur Kalra ◽  
...  

Abstract Aims This meta-analysis provides summary odds ratio (OR) estimates for associations between treatment with (vs. without) renin–angiotensin system blockers and risk of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection and coronavirus disease 2019 (CoViD-19) severity (including case-fatality) in patients with hypertension, and in all patients (irrespective of hypertension). Methods and results PubMed, EMBASE, Web of Science, Google Scholar, medRxiv, and SSRN were searched (2 May 2020 to 12 August 2020) for non-randomized observational CoViD-19 studies. Event/patient numbers were extracted, comparing angiotensin-converting enzyme (ACE) inhibitor/angiotensin-receptor blocker (ARB) treatment (and each separately), to treatment with neither drug, for the outcomes: (i) likelihood of SARS-CoV-2 infection; (ii) CoViD-19 severity [including hospitalization, intensive therapy unit (ITU), ventilation]; (iii) case-fatality. The risk of bias was assessed (ROBINS-I). Random-effects meta-analysis estimates were pooled. Eighty-six studies including 459 755 patients (103 317 with hypertension), were analysed. In patients with hypertension, ACE inhibitor or ARB treatment was not associated with a greater likelihood of SARS-CoV-2 infection in 60 141 patients (OR 1.06, 95% CI 0.99–1.14), hospitalization in 5925 patients (OR 0.90, 0.62–1.31), ITU in 7218 patients (OR 1.06, 0.73–1.56), ventilation (or ITU/ventilation/death) in 13 163 patients (OR 0.91, 0.72–1.15) or case-fatality in 18 735 patients with 2893 deaths (OR 0.75, 0.61–0.92). Conclusion Angiotensin-converting enzyme inhibitors and ARBs appear safe in the context of SARS-CoV-2 infection and should not be discontinued. PROSPERO registration number CRD42020186996.

2019 ◽  
Vol 20 (4) ◽  
pp. 147032031988193
Author(s):  
Zhen Cheng ◽  
Zhiwei Liu

Objective: The renin–angiotensin system gene has been implicated in the progression of colorectal cancer. Nevertheless, the details of that role remain controversial. We performed a meta-analysis to investigate the correlation between renin–angiotensin system gene polymorphisms and colorectal cancer. Methods: We retrieved relevant studies from PubMed and Embase. Subsequently, fixed or random-effects models were used to calculate pooled odds ratios (ORs) with 95% confidence intervals (CIs). Results: We identified six studies of the angiotensin-converting enzyme insertion/deletion (I/D) polymorphism, and two studies of the angiotensinogen M235T polymorphism. The angiotensin-converting enzyme I/D polymorphism did not significantly correlate with colorectal cancer risk in the total population (DD vs. II: OR 0.77, 95% CI 0.39–1.50; DI vs. II: OR 1.05, 95% CI 0.85–1.30; dominant model: OR 0.94, 95% CI 0.68–1.31; recessive model: OR 1.01, 95% CI 0.80–1.27). Similarly, the angiotensinogen M235T polymorphism was not associated with colorectal cancer risk (TT vs. MM: OR 1.38, 95% CI 0.52–3.67; TM vs. MM: OR 1.19, 95% CI 0.96–1.47; dominant model: OR 1.28, 95% CI 0.77–2.14; recessive model: OR 1.17, 95% CI 0.53–2.59). Conclusion: Our findings suggest that the angiotensin-converting enzyme I/D and angiotensinogen M235T polymorphisms are unlikely to correlate with colorectal cancer.


Hypertension ◽  
2020 ◽  
Vol 75 (6) ◽  
pp. 1382-1385 ◽  
Author(s):  
A.H. Jan Danser ◽  
Murray Epstein ◽  
Daniel Batlle

During the spread of the severe acute respiratory syndrome coronavirus-2, some reports of data still emerging and in need of full analysis indicate that certain groups of patients are at risk of COVID-19. This includes patients with hypertension, heart disease, diabetes mellitus, and clearly the elderly. Many of those patients are treated with renin-angiotensin system blockers. Because the ACE2 (angiotensin-converting enzyme 2) protein is the receptor that facilitates coronavirus entry into cells, the notion has been popularized that treatment with renin-angiotensin system blockers might increase the risk of developing a severe and fatal severe acute respiratory syndrome coronavirus-2 infection. The present article discusses this concept. ACE2 in its full-length form is a membrane-bound enzyme, whereas its shorter (soluble) form circulates in blood at very low levels. As a mono-carboxypeptidase, ACE2 contributes to the degradation of several substrates including angiotensins I and II. ACE (angiotensin-converting enzyme) inhibitors do not inhibit ACE2 because ACE and ACE2 are different enzymes. Although angiotensin II type 1 receptor blockers have been shown to upregulate ACE2 in experimental animals, the evidence is not always consistent and differs among the diverse angiotensin II type 1 receptor blockers and differing organs. Moreover, there are no data to support the notion that ACE inhibitor or angiotensin II type 1 receptor blocker administration facilitates coronavirus entry by increasing ACE2 expression in either animals or humans. Indeed, animal data support elevated ACE2 expression as conferring potential protective pulmonary and cardiovascular effects. In summary, based on the currently available evidence, treatment with renin-angiotensin system blockers should not be discontinued because of concerns with coronavirus infection.


1997 ◽  
Vol 92 (5) ◽  
pp. 455-465 ◽  
Author(s):  
Martin P. Kelly ◽  
OLE Kahr ◽  
Christian Aalkjaer ◽  
Frederic Cumin ◽  
Nilesh J Samani

1. It has been suggested that local tissue renin—angiotensin systems may be activated in heart failure and that effects on such systems may, at least partially, explain the beneficial effects of angiotensin-converting enzyme (ACE) inhibitors in this syndrome. To investigate these hypotheses, we examined expression of renin-angiotensin system components in several tissues in a rodent model of post-myocardial infarction (MI) heart failure, and analysed whether such expression is modified by ACE inhibitor treatment. 2. Four groups of rats (n = 8–12 per group) were studied 30 days after surgery: (A) sham-operated rats with no treatment, (B) rats with post-MI heart failure induced by ligation of the left coronary artery, (C) sham-operated rats treated with the ACE inhibitor perindopril (1.5 mg day−1 kg−1), and (D) rats as per B, but treated with perindopril. Expression of renin, angiotensinogen, ACE and angiotensin subtype 1 receptor was assessed by quantification of their respective mRNAs by Northern blotting. 3. Renal renin mRNA increased 2-fold in animals with MI (group B) compared with controls (group A) (P < 0.05) and between 50 and 100-fold after ACE inhibitor treatment (P < 0.001). No change in renin gene expression was found in any extra-renal site either following MI or after ACE inhibitor treatment. Hepatic angiotensinogen mRNA level was similar in all groups, but kidney angiotensinogen mRNA level was increased 1.6-fold (P < 0.01) in the groups receiving perindopril. ACE mRNA level in the lung was not affected by ACE inhibitor treatment but decreased by 50% following MI (groups B and D, P < 0.01). This was associated with a similar (50%, P < 0.01) fall in lung ACE activity and was correlated with the severity of heart failure. Angiotensin subtype 1 receptor mRNA level was not affected in any tissue by either MI or ACE inhibitor treatment. 4. We did not find a systematic activation of tissue renin-angiotensin systems, as assessed by steady-state mRNA levels of key components of the system in experimental post-MI heart failure, or a major effect of ACE inhibitor treatment on expression of these components. However, we observed tissue-specific changes in expression of selected components of the renin-angiotensin system in the kidney and the lung in post-MI heart failure and after ACE inhibitor treatment, which may be of relevance to the pathophysiology of the syndrome and the effects of ACE inhibition.


TH Open ◽  
2020 ◽  
Vol 04 (02) ◽  
pp. e138-e144 ◽  
Author(s):  
Wolfgang Miesbach

AbstractThe activated renin–angiotensin system induces a prothrombotic state resulting from the imbalance between coagulation and fibrinolysis. Angiotensin II is the central effector molecule of the activated renin–angiotensin system and is degraded by the angiotensin-converting enzyme 2 to angiotensin (1–7). The novel coronavirus infection (classified as COVID-19) is caused by the new coronavirus SARS-CoV-2 and is characterized by an exaggerated inflammatory response that can lead to severe manifestations such as acute respiratory distress syndrome, sepsis, and death in a proportion of patients, mostly elderly patients with preexisting comorbidities. SARS-CoV-2 uses the angiotensin-converting enzyme 2 receptor to enter the target cells, resulting in activation of the renin–angiotensin system. After downregulating the angiotensin-converting enzyme 2, the vasoconstrictor angiotensin II is increasingly produced and its counterregulating molecules angiotensin (1–7) reduced. Angiotensin II increases thrombin formation and impairs fibrinolysis. Elevated levels were strongly associated with viral load and lung injury in patients with severe COVID-19. Therefore, the complex clinical picture of patients with severe complications of COVID-19 is triggered by the various effects of highly expressed angiotensin II on vasculopathy, coagulopathy, and inflammation. Future treatment options should focus on blocking the thrombogenic and inflammatory properties of angiotensin II in COVID-19 patients.


2019 ◽  
Vol 97 (12) ◽  
pp. 1115-1123 ◽  
Author(s):  
Seldag Bekpinar ◽  
Ece Karaca ◽  
Selin Yamakoğlu ◽  
F. İlkay Alp-Yıldırım ◽  
Vakur Olgac ◽  
...  

Cyclosporine, an immunosuppressive drug, exhibits a toxic effect on renal and vascular systems. The present study investigated whether resveratrol treatment alleviates renal and vascular injury induced by cyclosporine. Cyclosporine (25 mg/kg per day, s.c.) was given for 7 days to rats either alone or in combination with resveratrol (10 mg/kg per day, i.p.). Relaxation and contraction responses of aorta were examined. Serum levels of blood urea nitrogen, creatinine, angiotensin II, and angiotensin 1-7 were measured. Histopathological examinations as well as immunostaining for 4-hydroxynonenal and nitrotyrosine were performed in the kidney. RNA expressions of renin–angiotensin system components were also measured in renal and aortic tissues. Cyclosporine decreased the endothelium-dependent relaxation and increased vascular contraction in the aorta. It caused renal tubular degeneration and increased immunostaining for 4-hydroxynonenal, an oxidative stress marker. Cyclosporine also caused upregulations of the vasoconstrictive renin–angiotensin system components in renal (angiotensin-converting enzyme) and aortic (angiotensin II type 1 receptor) tissues. Resveratrol co-treatment prevented the cyclosporine-related deteriorations. Moreover, it induced the expressions of vasodilatory effective angiotensin-converting enzyme 2 and angiotensin II type 2 receptor in aorta and kidney, respectively. We conclude that resveratrol may be effective in preventing cyclosporine-induced renal tubular degeneration and vascular dysfunction at least in part by modulating the renin–angiotensin system.


Endocrinology ◽  
2007 ◽  
Vol 148 (5) ◽  
pp. 2453-2457 ◽  
Author(s):  
Shigeyuki Wakahara ◽  
Tadashi Konoshita ◽  
Shinichi Mizuno ◽  
Makoto Motomura ◽  
Chikako Aoyama ◽  
...  

Angiotensin-converting enzyme (ACE) 2, a newly emerging component of the renin-angiotensin system, is presumed to be a counterregulator against ACE in generating and degrading angiotensin II. It remains to be elucidated how mRNA levels of these two genes are quantitatively regulated in the kidney and also what kind of clinicopathological characteristics could influence the gene expressions in humans. Seventy-eight cases of biopsy-proven renal conditions were examined in detail. Total RNA from a small part of each renal cortical biopsy specimen was reverse transcribed, and the resultant cDNA was amplified for ACE, ACE2, and glyceraldehyde-3-phosphate dehydrogenase with a real-time PCR system. Then we investigated the relationship between clinicopathological variables and mRNA levels adjusted for glyceraldehyde-3-phosphate dehydrogenase. Statistically significant correlation was not observed between any clinicopathological variables and either of the gene expressions by pairwise comparison. However, a strong correlation was observed between the gene expressions of ACE and those of ACE2. Moreover, the ACE to ACE2 ratio was significantly higher in subjects with hypertension (HT) than that in subjects without HT. Whereas parameters of renal function, e.g. urinary protein excretion (UPE) and creatinine clearance (Ccr), are not significantly related to the ACE to ACE2 ratio as a whole, the HT status may reflect disease-induced deterioration of renal function. That is, UPE and Ccr of subjects with HT are significantly different from those without HT, in which a significant correlation is also observed between UPE and Ccr. Finally, stepwise regression analysis further revealed that only the HT status is an independent confounding determinant of the ACE to ACE2 ratio among the variables tested. Our data suggest that ACE2 might play an important role in maintaining a balanced status of local renin-angiotensin system synergistically with ACE by counterregulatory effects confounded by the presence of hypertension. Thus, ACE2 may exert pivotal effects on cardiovascular and renal conditions.


Sign in / Sign up

Export Citation Format

Share Document