scholarly journals Cooperative kinetics of both Hsp104 ATPase domains and interdomain communication revealed by AAA sensor-1 mutants

2002 ◽  
Vol 21 (1) ◽  
pp. 12-21 ◽  
Author(s):  
D. A. Hattendorf
Biochemistry ◽  
2021 ◽  
Author(s):  
Claudia A. Mak ◽  
Kenyon Weis ◽  
Tiffany Henao ◽  
Andrea Kuchtova ◽  
Tiantian Chen ◽  
...  

2021 ◽  
Author(s):  
Si-Kao Guo ◽  
Alexander J Sodt ◽  
Margaret E Johnson

Clathrin-coated structures must assemble on cell membranes to perform their primary function of receptor internalization. These structures show marked plasticity and instability, but what conditions are necessary to stabilize against disassembly have not been quantified. Recent in vitro fluorescence experiments have measured kinetics of stable clathrin assembly on membranes as controlled by key adaptor proteins like AP-2. Here, we combine this experimental data with microscopic reaction-diffusion simulations and theory to quantify mechanisms of stable vs unstable clathrin assembly on membranes. Both adaptor binding and dimensional reduction on the 2D surface are necessary to reproduce the cooperative kinetics of assembly. By applying our model to more physiologic-like conditions, where the stoichiometry and volume to area ratio are significantly lower than in vitro, we show that the critical nucleus contains ~25 clathrin, remarkably similar to sizes of abortive structures observed in vivo. Stable nucleation requires a stoichiometry of adaptor to clathrin that exceeds 1:1, meaning that AP-2 on its own has too few copies to nucleate lattices. Increasing adaptor concentration increases lattice sizes and nucleation speeds. For curved clathrin cages, we quantify both the cost of bending the membrane and the stabilization required to nucleate cages in solution. We find the energetics are comparable, suggesting that curving the lattice could offset the bending energy cost. Our model predicts how adaptor density controls stabilization of clathrin-coated structures against spontaneous disassembly, and shows remodeling and disassembly does not require ATPases, which is a critical advance towards predicting control of productive vesicle formation.


2015 ◽  
Vol 8 (3) ◽  
pp. 910-915 ◽  
Author(s):  
Luca Bertoluzzi ◽  
Rafael S. Sanchez ◽  
Linfeng Liu ◽  
Jin-Wook Lee ◽  
Elena Mas-Marza ◽  
...  

Power law voltage decay in perovskite solar cells shows cooperative relaxation phenomena.


Author(s):  
J. F. DeNatale ◽  
D. G. Howitt

The electron irradiation of silicate glasses containing metal cations produces various types of phase separation and decomposition which includes oxygen bubble formation at intermediate temperatures figure I. The kinetics of bubble formation are too rapid to be accounted for by oxygen diffusion but the behavior is consistent with a cation diffusion mechanism if the amount of oxygen in the bubble is not significantly different from that in the same volume of silicate glass. The formation of oxygen bubbles is often accompanied by precipitation of crystalline phases and/or amorphous phase decomposition in the regions between the bubbles and the detection of differences in oxygen concentration between the bubble and matrix by electron energy loss spectroscopy cannot be discerned (figure 2) even when the bubble occupies the majority of the foil depth.The oxygen bubbles are stable, even in the thin foils, months after irradiation and if van der Waals behavior of the interior gas is assumed an oxygen pressure of about 4000 atmospheres must be sustained for a 100 bubble if the surface tension with the glass matrix is to balance against it at intermediate temperatures.


Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Author(s):  
L. J. Chen ◽  
L. S. Hung ◽  
J. W. Mayer

When an energetic ion penetrates through an interface between a thin film (of species A) and a substrate (of species B), ion induced atomic mixing may result in an intermixed region (which contains A and B) near the interface. Most ion beam mixing experiments have been directed toward metal-silicon systems, silicide phases are generally obtained, and they are the same as those formed by thermal treatment.Recent emergence of silicide compound as contact material in silicon microelectronic devices is mainly due to the superiority of the silicide-silicon interface in terms of uniformity and thermal stability. It is of great interest to understand the kinetics of the interfacial reactions to provide insights into the nature of ion beam-solid interactions as well as to explore its practical applications in device technology.About 500 Å thick molybdenum was chemical vapor deposited in hydrogen ambient on (001) n-type silicon wafer with substrate temperature maintained at 650-700°C. Samples were supplied by D. M. Brown of General Electric Research & Development Laboratory, Schenectady, NY.


Sign in / Sign up

Export Citation Format

Share Document