scholarly journals P3979Using large-tip ablation catheter markedly decreases bipolar signal amplitude near spiral wave center but this is not the case with using multi-electrode mapping catheter: A simulation study

2017 ◽  
Vol 38 (suppl_1) ◽  
Author(s):  
K. Sakata ◽  
Y. Okuyama ◽  
T. Ozawa ◽  
R. Haraguchi ◽  
M. Horie ◽  
...  
2021 ◽  
Author(s):  
Claudio Fabbri ◽  
Chiara Bartolucci ◽  
Corrado Tomasi ◽  
Paolo Sabbatani ◽  
Stefano Severi ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Chiara Bartolucci ◽  
Claudio Fabbri ◽  
Corrado Tomasi ◽  
Paolo Sabbatani ◽  
Stefano Severi ◽  
...  

Atrial fibrillation (AF) is the most common cardiac arrhythmia and catheter mapping has been proved to be an effective approach for detecting AF drivers to be targeted by ablation. Among drivers, the so-called rotors have gained the most attention: their identification and spatial location could help to understand which patient-specific mechanisms are acting, and thus to guide the ablation execution. Since rotor detection by multi-electrode catheters may be influenced by several structural parameters including inter-electrode spacing, catheter coverage, and endocardium-catheter distance, in this study we proposed a tool for testing the ability of different catheter shapes to detect rotors in different conditions. An approach based on the solution of the monodomain equations coupled with a modified Courtemanche ionic atrial model, that considers an electrical remodeling, was applied to simulate spiral wave dynamics on a 2D model for 7.75 s. The developed framework allowed the acquisition of unipolar signals at 2 KHz. Two high-density multipolar catheters were simulated (Advisor™ HD Grid and PentaRay®) and placed in a 2D region in which the simulated spiral wave persists longer. The configuration of the catheters was then modified by changing the number of electrodes, inter-electrodes distance, position, and atrial-wall distance for assessing how they would affect the rotor detection. In contact with the wall and at 1 mm distance from it, all the configurations detected the rotor correctly, irrespective of geometry, coverage, and inter-electrode distance. In the HDGrid-like geometry, the increase of the inter-electrode distance from 3 to 6 mm caused rotor detection failure at 2 mm distance from the LA wall. In the PentaRay-like configuration, regardless of inter-electrode distance, rotor detection failed at 3 mm endocardium-catheter distance. The asymmetry of this catheter resulted in rotation-dependent rotor detection. To conclude, the computational framework we developed is based on realistic catheter shapes designed with parameter configurations which resemble clinical settings. Results showed it is well suited to investigate how mapping catheter geometry and location affect AF driver detection, therefore it is a reliable tool to design and test new mapping catheters.


2010 ◽  
Vol 6 (3) ◽  
pp. 63
Author(s):  
Albenque Jean-Paul ◽  
Arnaud Chaumeil ◽  
Stephane Combes ◽  
David Senouf ◽  
Luis Martins ◽  
...  

The OneMap™ tool, a new software feature of the EnSite Velocity™ System, and the new Inquiry™ AFocus™ II double loop duodecapolar diagnostic catheter (DDC) were created to provide faster data collection to efficiently deal with complex arrhythmias such as persistent atrial fibrillation ablation (AF). Our study was performed to compare acquisition criteria, time needed to create the maps, number of collected points, relevance of complex fractionated atrial electrogram (CFE) mapping and correlation between CFE maps with the new DDC and a 4mm irrigated ablation catheter (ABL), Therapy™ Cool Path™ Duo, using the OneMap tool. Ten patients undergoing persistent AF ablation were enrolled. With the DDC, more points were collected (485±173 versus 183±37) and the time needed to create CFE maps was shorter (12±4 versus 24±2 minutes). There were 39 zones detected with the DDC against 35 with the ABL. The correlation between the maps was 80%; however, four additional regions were detected with the DDC (an 11% increase). In conclusion, the Inquiry AFocus II DDC is a feasible, fast and accurate tool for automatic CFE mapping using OneMap.


2018 ◽  
Vol 136 ◽  
pp. 359-369 ◽  
Author(s):  
Timofei I. Epanchintsev ◽  
Sergei F. Pravdin ◽  
Alexander V. Panfilov

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Sanjay R. Kharche ◽  
Irina V. Biktasheva ◽  
Gunnar Seemann ◽  
Henggui Zhang ◽  
Vadim N. Biktashev

The interaction of spiral waves of excitation with atrial anatomy remains unclear. This simulation study isolates the role of atrial anatomical structures on spiral wave spontaneous drift in the human atrium. We implemented realistic and idealised 3D human atria models to investigate the functional impact of anatomical structures on the long-term (∼40 s) behaviour of spiral waves. The drift of a spiral wave was quantified by tracing its tip trajectory, which was correlated to atrial anatomical features. The interaction of spiral waves with the following idealised geometries was investigated: (a) a wedge-like structure with a continuously varying atrial wall thickness; (b) a ridge-like structure with a sudden change in atrial wall thickness; (c) multiple bridge-like structures consisting of a bridge connected to the atrial wall. Spiral waves drifted from thicker to thinner regions and along ridge-like structures. Breakthrough patterns caused by pectinate muscles (PM) bridges were also observed, albeit infrequently. Apparent anchoring close to PM-atrial wall junctions was observed. These observations were similar in both the realistic and the idealised models. We conclude that spatially altering atrial wall thickness is a significant cause of drift of spiral waves. PM bridges cause breakthrough patterns and induce transient anchoring of spiral waves.


2019 ◽  
Vol 42 (5) ◽  
pp. 515-520 ◽  
Author(s):  
Masaharu Masuda ◽  
Mitsutoshi Asai ◽  
Osamu Iida ◽  
Shin Okamoto ◽  
Takayuki Ishihara ◽  
...  

Author(s):  
Peter Loh ◽  
René van Es ◽  
Marijn H.A. Groen ◽  
Kars Neven ◽  
Wil Kassenberg ◽  
...  

Background: Irreversible electroporation (IRE) is a promising new nonthermal ablation technology for pulmonary vein (PV) isolation in patients with atrial fibrillation. Experimental data suggest that IRE ablation produces large enough lesions without the risk of PV stenosis, artery, nerve, or esophageal damage. This study aimed to investigate the feasibility and safety of single pulse IRE PV isolation in patients with atrial fibrillation. Methods: Ten patients with symptomatic paroxysmal or persistent atrial fibrillation underwent single pulse IRE PV isolation under general anesthesia. Three-dimensional reconstruction and electroanatomical voltage mapping (EnSite Precision, Abbott) of left atrium and PVs were performed using a conventional circular mapping catheter. PV isolation was performed by delivering nonarcing, nonbarotraumatic 6 ms, 200 J direct current IRE applications via a custom nondeflectable 14-polar circular IRE ablation catheter with a variable hoop diameter (16–27 mm). A deflectable sheath (Agilis, Abbott) was used to maneuver the ablation catheter. A minimum of 2 IRE applications with slightly different catheter positions were delivered per vein to achieve circular tissue contact, even if PV potentials were abolished after the first application. Bidirectional PV isolation was confirmed with the circular mapping catheter and a post ablation voltage map. After a 30-minute waiting period, adenosine testing (30 mg) was used to reveal dormant PV conduction. Results: All 40 PVs could be successfully isolated with a mean of 2.4±0.4 IRE applications per PV. Mean delivered peak voltage and peak current were 2154±59 V and 33.9±1.6 A, respectively. No PV reconnections occurred during the waiting period and adenosine testing. No periprocedural complications were observed. Conclusions: In the 10 patients of this first-in-human study, acute bidirectional electrical PV isolation could be achieved safely by single pulse IRE ablation.


Sign in / Sign up

Export Citation Format

Share Document