The effect of age and gender on heart rate variability in healthy individuals

2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
A Alyahya ◽  
A Fuller ◽  
N Okwose ◽  
S Charman ◽  
G Macgowan ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Objective Cardiovascular autonomic function, represented by heart rate variability (HRV) is a simple, non-invasive measure used to determine alteration of sympathetic and parasympathetic control. The aim of the present study was firstly to evaluate the effect of age and gender on HRV measures, and secondly to determine the relationship between measures of HRV and functional capacity in healthy individuals Methods This was a retrospective, single centre, cross-sectional, observational study. Data were collected between January 2018 and July 2019. Sixty-eight healthy participants (age range: 19-78 years) were stratified according to age into the younger age group (<40 years of age, N = 43, males, N = 26; females, N = 17) or the older age group (>55 years of age, N = 25, males, N = 14; females, N = 11). Frequency domain HRV measures (i.e. absolute and normalised low frequency power (LF), high frequency power HF and their ration i.e. LF/HF ratio) were derived from RR interval and recorded at rest (supine position) for 30 minutes. Simultaneous non-invasive gas-exchange and central haemodynamic measurements (bioimpedance) were collected at rest and during maximal graded cardiopulmonary exercise stress test using semi-recumbent cycle ergometer. Results The mean age of the younger group was 26 ± 6 years and older 64 ± 6 years. Cardiorespiratory fitness (i.e. peak oxygen consumption) was significantly reduced in older compared to younger age group (1.60 ± 0.57 vs. 2.38 ± 0.74 L/min, p < 0.01). The mean absolute values of HF power declined with age in males by 32% (younger, 1156 ± 806 ms2 vs. older, 835 ± 488 ms2, p = 0.18), but not in females 3% difference (younger, 1182 ± 958 ms2 vs older, 1150 ± 843 ms2, p= 0.92). There was no significant difference in HF power between males and females in the younger age group (young male, 1156 ± 806 ms2  vs. young female, 1182 ± 958ms2, p = 0.92), but older males demonstrated 32% lower HF power than older females (835 ± 488 ms2 vs. 1150 ± 843 ms2, p= 0.25). Further analyses revealed no significant relationship between measures of heart rate variability and functional capacity i.e. the HF power was not significantly related to peak oxygen consumption in males (r= - 0.15, p= 0.36) or females (r= 0.05, p = 0.80). Conclusions High frequency power of the heart rate variability declines with age more in men but not women. Gender difference in high frequency power is apparent in older but not younger age, with older women showing nearly one third higher HF than older men. Measures of heart rate variability do not predict cardiorespiratory fitness

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Luyi Li ◽  
Dayu Hu ◽  
Wenlou Zhang ◽  
Liyan Cui ◽  
Xu Jia ◽  
...  

Abstract Background The adverse effects of particulate air pollution on heart rate variability (HRV) have been reported. However, it remains unclear whether they differ by the weight status as well as between wake and sleep. Methods A repeated-measure study was conducted in 97 young adults in Beijing, China, and they were classified by body mass index (BMI) as normal-weight (BMI, 18.5–24.0 kg/m2) and obese (BMI ≥ 28.0 kg/m2) groups. Personal exposures to fine particulate matter (PM2.5) and black carbon (BC) were measured with portable exposure monitors, and the ambient PM2.5/BC concentrations were obtained from the fixed monitoring sites near the subjects’ residences. HRV and heart rate (HR) were monitored by 24-h Holter electrocardiography. The study period was divided into waking and sleeping hours according to time-activity diaries. Linear mixed-effects models were used to investigate the effects of PM2.5/BC on HRV and HR in both groups during wake and sleep. Results The effects of short-term exposure to PM2.5/BC on HRV were more pronounced among obese participants. In the normal-weight group, the positive association between personal PM2.5/BC exposure and high-frequency power (HF) as well as the ratio of low-frequency power to high-frequency power (LF/HF) was observed during wakefulness. In the obese group, personal PM2.5/BC exposure was negatively associated with HF but positively associated with LF/HF during wakefulness, whereas it was negatively correlated to total power and standard deviation of all NN intervals (SDNN) during sleep. An interquartile range (IQR) increase in BC at 2-h moving average was associated with 37.64% (95% confidence interval [CI]: 25.03, 51.51%) increases in LF/HF during wakefulness and associated with 6.28% (95% CI: − 17.26, 6.15%) decreases in SDNN during sleep in obese individuals, and the interaction terms between BC and obesity in LF/HF and SDNN were both statistically significant (p <  0.05). The results also suggested that the effects of PM2.5/BC exposure on several HRV indices and HR differed in magnitude or direction between wake and sleep. Conclusions Short-term exposure to PM2.5/BC is associated with HRV and HR, especially in obese individuals. The circadian rhythm of HRV should be considered in future studies when HRV is applied. Graphical abstract


1996 ◽  
Vol 271 (2) ◽  
pp. H455-H460 ◽  
Author(s):  
K. P. Davy ◽  
N. L. Miniclier ◽  
J. A. Taylor ◽  
E. T. Stevenson ◽  
D. R. Seals

Coronary heart disease (CHD) and cardiac sudden death (CSD) incidence accelerates after menopause, but the incidence is lower in physically active versus less active women. Low heart rate variability (HRV) is a risk factor for CHD and CSD. The purpose of the present investigation was to test the hypothesis that HRV at rest is greater in physically active compared with less active postmenopausal women. If true, we further hypothesized that the greater HRV in the physically active women would be closely associated with an elevated spontaneous cardiac baroreflex sensitivity (SBRS). HRV (both time and frequency domain measures) and SBRS (sequence method) were measured during 5-min periods of controlled frequency breathing (15 breaths/min) in the supine, sitting, and standing postures in 9 physically active postmenopausal women (age = 53 +/- 1 yr) and 11 age-matched controls (age = 56 +/- 2 yr). Body weight, body mass index, and body fat percentage were lower (P < 0.01) and maximal oxygen uptake was higher (P < 0.01) in the physically active group. The standard deviation of the R-R intervals (time domain measure) was higher in all postures in the active women (P < 0.05) as were the high-frequency, low-frequency, and total power of HRV. SBRS also was higher (P < 0.05) in the physically active women in all postures and accounted for approximately 70% of the variance in the high-frequency power of HRV (P < 0.05). The results of the present investigation indicate that physically active postmenopausal women demonstrate higher levels of HRV compared with age-matched, less active women. Furthermore, SBRS accounted for the majority of the variance in the high-frequency power of HRV, suggesting the possibility of a mechanistic link with cardiac vagal modulation of heart rate. Our findings may provide insight into a possible cardioprotective mechanism in physically active postmenopausal women.


2005 ◽  
Vol 33 (01) ◽  
pp. 157-164 ◽  
Author(s):  
Sheng-Teng Huang ◽  
Gau-Yang Chen ◽  
Huey-Ming Lo ◽  
Jaung-Gang Lin ◽  
Yin-Shiung Lee ◽  
...  

Acupuncture at the Neiguan (P6) point has been shown to lessen nausea and vomiting which are related to vagal modulation. This study investigated whether acupuncture at the P6 point could improve vagal modulation by using heart rate variability analysis. We compared the heart rate variability measures of 39 subjects receiving acupuncture at the P6 point, 38 subjects receiving sham acupuncture, and 34 subjects receiving no treatment at all. The normalized high-frequency power was used as the index of vagal modulation, and the low-/high-frequency power ratio was used as the index of sympathovagal balance. The normalized high-frequency power after acupuncture increased significantly from 28.1±12.6 nu (mean±SD) to 30.7±14.1 nu in the P6 acupuncture group, but not in the sham acupuncture (30.6±13.7 nu versus 31.8±13.8 nu) or no-treatment group (30.1±15.0 nu versus 30.1±15.7 nu). In both the P6 and sham acupuncture groups, the mean RR interval (the intervals between consecutive R waves in the electrocardiogram) increased significantly after acupuncture. In the no-treatment group, there was no statistical difference in all heart rate variability measures in the initial and later sessions. In conclusion, acupuncture at the P6 point can increase vagal modulation of the subjects. This result may be helpful in the understanding of the mechanism underlying the effect of acupuncture or acupressure at P6 on the lessening of nausea and vomiting in clinic.


2006 ◽  
Vol 31 (3) ◽  
pp. 277-282 ◽  
Author(s):  
Katharine E Reed ◽  
Darren E.R Warburton ◽  
Crystal L Whitney ◽  
Heather A McKay

Heart rate variability (HRV) is an umbrella term for a variety of measures that assess autonomic influence on the heart. Reduced beat-to-beat variability is found in individuals with a variety of cardiac abnormalities. A reduced HRV positively correlates with obesity, poor aerobic fitness, and increasing age. Racial (black-white) differences are apparent in adults and adolescents. We aimed to evaluate (i) Asian-Caucasian differences in HRV and (ii) differences in HRV between girls and boys. Sixty-two children (30 male (15 Caucasian, 15 Asian) and 32 female (15 Caucasian, 17 Asians)) with a mean age of 10.3 ± 0.6 y underwent 5 min resting HRV recording, fitness testing (Leger's 20 m shuttle), and self-assessed maturity. Outcome HRV measures were a ratio of low to high frequency power (LF:HF), standard deviation of R-R intervals (SDRR) and root mean square of successive R-R intervals (RMSSD). Data were compared between groups using analysis of covariance (ANCOVA). There were no race or sex differences for time domain variables, mean R-R, body mass index, or blood pressure. Compared with Caucasian children, Asian children displayed a higher adjusted (fitness, R-R interval) LF:HF ratio (72.9 ± 59.4 vs. 120.6 ± 85.3, p < 0.05). Girls demonstrated a higher adjusted LF:HF power than boys (117.2 ± 85.1 vs. 76.6 ± 62.4, p = < 0.05). In conclusion, Asian and Caucasian children display different frequency domain components of heart rate variability.Key words: autonomic nervous system, sympathetic, vagal, race, aerobic fitness, sex.


Neurology ◽  
2019 ◽  
Vol 93 (14 Supplement 1) ◽  
pp. S8.1-S8
Author(s):  
Mohammad Haider ◽  
Charles Wilber ◽  
Kaitlin Viera ◽  
Itai Bezherano ◽  
John Leddy

ObjectiveWe measured heart rate variability (HRV) during physiological stimuli in acutely concussed adolescents (CX) and after clinical recovery, and compared with healthy controls (HC).BackgroundConcussion is associated with autonomic dysfunction. Face Cooling (FC) triggers the trigeminal nerve to evoke transient increases in cardiac parasympathetic (PNS) activity.Design/Methods11 CX (14.8 ± 0.9 years, 6 male, 7 days since injury) and 11 HC (16.1 ± 1.1 years, 9 male) participated. We calculated mean heart rate (HR), standard deviation of root mean square (RMSSD, measure of PNS tone) and low-frequency to high-frequency power ratio (LF/HF ratio, measure of sympathetic [SNS] tone) at rest and 3-minute FC test.ResultsCX at Visit 1 and 2 had significantly lesser increase in HR (p = 0.02) and RMSSD (p = 0.038) than HC on FC.ConclusionsThese data show that acutely concussed participants have an attenuated PNS response to physiological stimuli which continues after clinical recovery.


2021 ◽  
pp. 431-437
Author(s):  
Kuo-Cheng Liu ◽  
Jong-Shyan Wang ◽  
Chien-Ya Hsu ◽  
Chia-Hao Liu ◽  
Carl PC Chen ◽  
...  

It is important to use short breaks to accelerate post-exercise recovery in sports. Previous studies have revealed that vibration can reduce post-exercise muscle soreness. However, there is still high heterogeneity in the effects of vibration on cardiovascular autonomic activities, and most studies to date have focused on high-frequency vibration. This study aimed to investigate the effect of low-frequency lower-body vibration (LBV) on post-exercise changes in heart rate variability and peripheral arterial tone. Ten men and 9 women aged 20 to 25 were recruited for this study. Each subject visited the testing room three times with at least 2 days in between. Each time, the subject received one of the three different vibration frequencies (0, 5, and 15 Hz) in a random order in the sitting position for 10 minutes. LBV was performed immediately after a static standing (control) test and 3-min-step test. Heart rate variability and digital volume pulse wave were recorded during the vibration phase (V1: vibration 0-5 minutes; V2: 6-10 minutes) and the recovery phase (Rc1: recovery phase 11-15 minutes; Rc2: 16-20 minutes). The result of digital pulse wave analysis showed that the reflection index (RI) under 15 Hz decreased during V1. Heart rate of the 15-Hz group also decreased during Rc1 and Rc2. According to the analysis of heart rate variability, low-frequency power/high-frequency power (LF/HF) decreased and normalized high-frequency power (nHF) increased during V2, Rc1 and Rc2 under 15 Hz and, during Rc2 under 5 Hz vibration. This study confirmed that the application of low-frequency LBV after exercise can reduce peripheral vascular tone, accelerate heart rate recovery, decrease cardiac sympathetic nerve activity, and promote parasympathetic nerve activity. The effect was more pronounced at 15 Hz than at 5 Hz. The findings provide a method to accelerate cardiovascular autonomic recovery after exercise.


1999 ◽  
Vol 96 (1) ◽  
pp. 49-57
Author(s):  
Paolo PANCERA ◽  
Stefano SANSONE ◽  
Barbara PRESCIUTTINI ◽  
Luciano MONTAGNA ◽  
Silvia CERÙ ◽  
...  

Our aim was to investigate the sympathetic hyperactivity of systemic sclerosis that may lead to greater morbidity and mortality from cardiovascular events. We analysed the sympathetic (low-frequency) and vagal (high-frequency) components of heart rate variability, in supine and upright positions, in 10 patients with systemic sclerosis, 12 patients with primary Raynaud's phenomenon and 14 controls. We also analysed lung function in order to evaluate a possible link between heart rate variability and ventilation parameters. Heart rate variability was reduced in the supine position in subjects with systemic sclerosis both in comparison with primary Raynaud's phenomenon (total power: 1103±156 versus 3302±486 ;ms2, P< 0.004) and control subjects (3148±422 ;ms2, P< 0.002). Low-frequency power was higher in patients with systemic sclerosis than in the controls (54.5±4.5 versus 42.5±3.5 normalized units, P< 0.01). During tilt, the change in heart rate was +44% in controls, +24% in subjects with primary Raynaud's phenomenon, and only +17% in the patients with systemic sclerosis (P< 0.01 versus controls). In patients with systemic sclerosis we found a significant correlation between high-frequency power and the indices of lung function (residual volume: r2 = 0.5143, P< 0.01; total lung capacity: r2 = 0.5142, P< 0.01, vital capacity: r2 = 0.3789, P< 0.05). Heart rate variability was reduced and sympathetic output increased in patients with systemic sclerosis. Subjects with primary Raynaud's phenomenon were characterized by normal heart rate variability and by some degree of sympathetic hyperactivity. During tilting, subjects with systemic sclerosis maintained an unmodified heart rate variability, thus suggesting an impaired baroceptor modulation of the autonomic control. The negative correlation between high-frequency power and indices of respiratory insufficiency in patients with systemic sclerosis suggests that the pulmonary structure plays an important role in the modulation of heart rate variability.


Sign in / Sign up

Export Citation Format

Share Document