scholarly journals P446Role of the late sodium current in determining electrophysiological characteristics of cardiac ventricular myocytes

EP Europace ◽  
2018 ◽  
Vol 20 (suppl_1) ◽  
pp. i86-i86
Author(s):  
B Horvath ◽  
R Veress ◽  
D Baranyai ◽  
D Kiss ◽  
B Kurtan ◽  
...  
2014 ◽  
Vol 124 (3) ◽  
pp. 365-373 ◽  
Author(s):  
Xiao-Jing Wang ◽  
Lei-Lei Wang ◽  
Chen Fu ◽  
Pei-Hua Zhang ◽  
Ying Wu ◽  
...  

2014 ◽  
Vol 306 (3) ◽  
pp. H455-H461 ◽  
Author(s):  
Antao Luo ◽  
Jihua Ma ◽  
Yejia Song ◽  
Chunping Qian ◽  
Ying Wu ◽  
...  

An increase of cardiac late sodium current ( INa.L) is arrhythmogenic in atrial and ventricular tissues, but the densities of INa.L and thus the potential relative contributions of this current to sodium ion (Na+) influx and arrhythmogenesis in atria and ventricles are unclear. In this study, whole-cell and cell-attached patch-clamp techniques were used to measure INa.L in rabbit left atrial and ventricular myocytes under identical conditions. The density of INa.L was 67% greater in left atrial (0.50 ± 0.09 pA/pF, n = 20) than in left ventricular cells (0.30 ± 0.07 pA/pF, n = 27, P < 0.01) when elicited by step pulses from −120 to −20 mV at a rate of 0.2 Hz. Similar results were obtained using step pulses from −90 to −20 mV. Anemone toxin II (ATX II) increased INa.L with an EC50 value of 14 ± 2 nM and a Hill slope of 1.4 ± 0.1 ( n = 9) in atrial myocytes and with an EC50 of 21 ± 5 nM and a Hill slope of 1.2 ± 0.1 ( n = 12) in ventricular myocytes. Na+ channel open probability (but not mean open time) was greater in atrial than in ventricular cells in the absence and presence of ATX II. The INa.L inhibitor ranolazine (3, 6, and 9 μM) reduced INa.L more in atrial than ventricular myocytes in the presence of 40 nM ATX II. In summary, rabbit left atrial myocytes have a greater density of INa.L and higher sensitivities to ATX II and ranolazine than rabbit left ventricular myocytes.


2012 ◽  
Vol 302 (8) ◽  
pp. C1141-C1151 ◽  
Author(s):  
Jihua Ma ◽  
Antao Luo ◽  
Lin Wu ◽  
Wei Wan ◽  
Peihua Zhang ◽  
...  

An increase in intracellular Ca2+ concentration ([Ca2+]i) augments late sodium current ( INa.L) in cardiomyocytes. This study tests the hypothesis that both Ca2+-calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) mediate the effect of increased [Ca2+]i to increase INa.L. Whole cell and open cell-attached patch clamp techniques were used to record INa.L in rabbit ventricular myocytes dialyzed with solutions containing various concentrations of [Ca2+]i. Dialysis of cells with [Ca2+]i from 0.1 to 0.3, 0.6, and 1.0 μM increased INa.L in a concentration-dependent manner from 0.221 ± 0.038 to 0.554 ± 0.045 pA/pF ( n = 10, P < 0.01) and was associated with an increase in mean Na+ channel open probability and prolongation of channel mean open-time ( n = 7, P < 0.01). In the presence of 0.6 μM [Ca2+]i, KN-93 (10 μM) and bisindolylmaleimide (BIM, 2 μM) decreased INa.L by 45.2 and 54.8%, respectively. The effects of KN-93 and autocamtide-2-related inhibitory peptide II (2 μM) were not different. A combination of KN-93 and BIM completely reversed the increase in INa.L as well as the Ca2+-induced changes in Na+ channel mean open probability and mean open-time induced by 0.6 μM [Ca2+]i. Phorbol myristoyl acetate increased INa.L in myocytes dialyzed with 0.1 μM [Ca2+]i; the effect was abolished by Gö-6976. In summary, both CaMKII and PKC are involved in [Ca2+]i-mediated augmentation of INa.L in ventricular myocytes. Inhibition of CaMKII and/or PKC pathways may be a therapeutic target to reduce myocardial dysfunction and cardiac arrhythmias caused by calcium overload.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51358 ◽  
Author(s):  
Chunping Qian ◽  
Jihua Ma ◽  
Peihua Zhang ◽  
Antao Luo ◽  
Chao Wang ◽  
...  

2014 ◽  
Vol 593 (6) ◽  
pp. 1409-1427 ◽  
Author(s):  
Sudhish Mishra ◽  
Vitaliy Reznikov ◽  
Victor A. Maltsev ◽  
Nidas A. Undrovinas ◽  
Hani N. Sabbah ◽  
...  

2015 ◽  
Vol 93 (7) ◽  
pp. 527-534 ◽  
Author(s):  
Balázs Horváth ◽  
Bence Hegyi ◽  
Kornél Kistamás ◽  
Krisztina Váczi ◽  
Tamás Bányász ◽  
...  

This study was designed to investigate the influence of cytosolic Ca2+ levels ([Ca2+]i) on action potential duration (APD) and on the incidence of early afterdepolarizations (EADs) in canine ventricular cardiomyocytes. Action potentials (AP) of isolated cells were recorded using conventional sharp microelectrodes, and the concomitant [Ca2+]i was monitored with the fluorescent dye Fura-2. EADs were evoked at a 0.2 Hz pacing rate by inhibiting the rapid delayed rectifier K+ current with dofetilide, by activating the late sodium current with veratridine, or by activating the L-type calcium current with BAY K8644. These interventions progressively prolonged the AP and resulted in initiation of EADs. Reducing [Ca2+]i by application of the cell-permeant Ca2+ chelator BAPTA-AM lengthened the AP at 1.0 Hz if it was applied alone, in the presence of veratridine, or in the presence of BAY K8644. However, BAPTA-AM shortened the AP if the cells were pretreated with dofetilide. The incidence of the evoked EADs was strongly reduced by BAPTA-AM in dofetilide, moderately reduced in veratridine, whereas EAD incidence was increased by BAPTA-AM in the presence of BAY K8644. Based on these experimental data, changes in [Ca2+]i have marked effects on APD as well as on the incidence of EADs; however, the underlying mechanisms may be different, depending on the mechanism of EAD generation. As a consequence, reduction of [Ca2+]i may eliminate EADs under some, but not all, experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document