Risk factor analysis and transmission dynamics of highly pathogenic avian influenza in Greece

2018 ◽  
Vol 28 (suppl_4) ◽  
Author(s):  
I Chatziprodromidou ◽  
S Tavornpanich ◽  
M Arvanitidou ◽  
E Brun ◽  
J Guitian ◽  
...  
Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 691
Author(s):  
Dae-Sung Yoo ◽  
Byungchul Chun ◽  
Kyung-Duk Min ◽  
Jun-Sik Lim ◽  
Oun-Kyoung Moon ◽  
...  

Highly pathogenic avian influenza (HPAI) virus is one of the most virulent and infectious pathogens of poultry. As a response to HPAI epidemics, veterinary authorities implement preemptive depopulation as a controlling strategy. However, mass culling within a uniform radius of the infection site can result in unnecessary depopulation. Therefore, it is useful to quantify the transmission distance from infected premises (IPs) before determining the optimal area for preemptive depopulation. Accordingly, we analyzed the transmission risk within spatiotemporal clusters of IPs using transmission kernel estimates derived from phylogenetic clustering information on 311 HPAI H5N6 IPs identified during the 2016–2017 epidemic, Republic of Korea. Subsequently, we explored the impact of varying the culling radius on the local transmission of HPAI given the transmission risk estimates. The domestic duck farm density was positively associated with higher transmissibility. Ring culling over a radius of 3 km may be effective for areas with high dense duck holdings, but this approach does not appear to significantly reduce the risk for local transmission in areas with chicken farms. This study provides the first estimation of the local transmission dynamics of HPAI in the Republic of Korea as well as insight into determining an effective ring culling radius.


2016 ◽  
Vol 90 (14) ◽  
pp. 6401-6411 ◽  
Author(s):  
Alice Fusaro ◽  
Luca Tassoni ◽  
Adelaide Milani ◽  
Joseph Hughes ◽  
Annalisa Salviato ◽  
...  

ABSTRACTNext-generation sequencing technology is now being increasingly applied to study the within- and between-host population dynamics of viruses. However, information on avian influenza virus evolution and transmission during a naturally occurring epidemic is still limited. Here, we use deep-sequencing data obtained from clinical samples collected from five industrial holdings and a backyard farm infected during the 2013 highly pathogenic avian influenza (HPAI) H7N7 epidemic in Italy to unravel (i) the epidemic virus population diversity, (ii) the evolution of virus pathogenicity, and (iii) the pathways of viral transmission between different holdings and sheds. We show a high level of genetic diversity of the HPAI H7N7 viruses within a single farm as a consequence of separate bottlenecks and founder effects. In particular, we identified the cocirculation in the index case of two viral strains showing a different insertion at the hemagglutinin cleavage site, as well as nine nucleotide differences at the consensus level and 92 minority variants. To assess interfarm transmission, we combined epidemiological and genetic data and identified the index case as the major source of the virus, suggesting the spread of different viral haplotypes from the index farm to the other industrial holdings, probably at different time points. Our results revealed interfarm transmission dynamics that the epidemiological data alone could not unravel and demonstrated that delay in the disease detection and stamping out was the major cause of the emergence and the spread of the HPAI strain.IMPORTANCEThe within- and between-host evolutionary dynamics of a highly pathogenic avian influenza (HPAI) strain during a naturally occurring epidemic is currently poorly understood. Here, we perform for the first time an in-depth sequence analysis of all the samples collected during a HPAI epidemic and demonstrate the importance to complement outbreak investigations with genetic data to reconstruct the transmission dynamics of the viruses and to evaluate the within- and between-farm genetic diversity of the viral population. We show that the evolutionary transition from the low pathogenic form to the highly pathogenic form occurred within the first infected flock, where we identified haplotypes with hemagglutinin cleavage site of different lengths. We also identify the index case as the major source of virus, indicating that prompt application of depopulation measures is essential to limit virus spread to other farms.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jung-Hoon Kwon ◽  
Dong-Hun Lee ◽  
Miria Ferreira Criado ◽  
Lindsay Killmaster ◽  
Md Zulfekar Ali ◽  
...  

2020 ◽  
Author(s):  
Timothée Vergne ◽  
Simon Gubbins ◽  
Claire Guinat ◽  
Billy Bauzile ◽  
Mattias Delpont ◽  
...  

Following the emergence of highly pathogenic avian influenza (H5N8) in France in early December 2020, we used duck mortality data of the index case to investigate within-flock transmission dynamics. A stochastic epidemic model was adjusted to the daily mortality data and model parameters were estimated using an approximate Bayesian computation sequential Monte Carlo (ABC-SMC) algorithm. Results suggested that the virus was introduced 4 days (95% credible interval: 3 – 5) prior to the day suspicion was reported and that the transmission rate was 3.7 day-1 (95%CI: 2.6 – 5.3). On average, ducks started being infectious 3.1 hours (95%CI: 0.4 – 8.0) after infection and remained infectious for 4.4 days (95%CI: 3.1 – 5.6). Model outputs also suggested that the number of infectious ducks was already 3239 (95%CI: 26 – 3706) the day before suspicion, emphasising the substantial latent threat this virus could pose to other poultry farms and to neighbouring wildlife. These estimations can be applied to upcoming outbreaks and made available to veterinary services within few hours. This study illustrates how mechanistic models can provide rapid relevant insights to contribute to the management of infectious disease outbreaks of farmed animals.


Sign in / Sign up

Export Citation Format

Share Document