Gut microbiome adaptation to extreme cold winter in wild plateau pika (Ochotona curzoniae) on the Qinghai-Tibet Plateau

2020 ◽  
Vol 367 (16) ◽  
Author(s):  
Yijie Wang ◽  
Rui Zhou ◽  
Qiaoling Yu ◽  
Tianshu Feng ◽  
Huan Li

ABSTRACT The Qinghai-Tibet Plateau is a harsh environment characterized by low temperature, high altitude and hypoxia, although some native mammals may adapt well to the extreme climate. However, how animal gut microbial community structure and function adapt to extreme cold climates is not well understood. Plateau pika (Ochotona curzoniae) is an ideal animal model with which to study the effects of climate change on host adaptation by studing intestinal microorganisms. Here, we used 16S rRNA sequencing technology combined with physiological methods to investigate plateau pika gut microbiota in summer and winter. Due to limited diet resources, the pikas in winter have a lower ability of degradation and fermentation for plant-based food (reduced cellulase activity and total short-chain fatty acids) by decreasing gut microbial diversity and some functional microbes, such as fiber-degrading bacteria Oscillospira and Treponema. Metagenomic prediction showed that most of those gene functions associated with metabolism (e.g. energy metabolism and lipid metabolism) were less abundant in winter, implying that the plateau pika slows diet fermentation and weakens energy requirements in the cold season. Our results have significance for explaining the mechanism of wild plateau mammals adapting to a high-altitude cold environment from the perspective of gut microbiome.

2020 ◽  
Vol 70 (4) ◽  
pp. 2233-2238 ◽  
Author(s):  
Zhi Tian ◽  
Shan Lu ◽  
Dong Jin ◽  
Jing Yang ◽  
Ji Pu ◽  
...  

Two Gram-staining-positive, catalase-positive, oxidase-negative, aerobic, non-motile, irregular rod-shaped bacterial strains (Z350T and Z527) were isolated from intestinal contents of plateau pika (Ochotona curzoniae) from the Qinghai–Tibet Plateau, PR China. Results of phylogenetic analyses based on 16S rRNA gene sequences indicated that strain Z350T belongs to the genus Mumia (family Nocardioidaceae ) but clearly differs from the currently recognized species Mumia xiangluensis DSM 101040T (98.4 % similarity) and Mumia flava DSM 27763T (97.4 %). Strain Z350T had a DNA G+C content of 70.7 mol% and shared 80.4 and 76.7 % average nucleotide identity values and 23.4 and 20.6 % in silico DNA–DNA hybridization relatedness with M. xiangluensis DSM 101040T and M. flava DSM 27763T, respectively. Further phylogenetic analyses based on 497 core genes indicated that our isolates were members of the genus Mumia but separated from all existing genera within the family Nocardioidaceae . The major cellular fatty acids were C18 : 1 ω9c and 10-methyl C18 : 0. The cell wall contained ll-diaminopimelic acid as the diamino acid, and rhamnose, ribose and glucose as whole cell-wall sugars. MK-9(H4) was detected as the major menaquinone. Polar lipids present were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and one unidentified phospholipid. Based on distinct differences in the genotypic and phenotypic data from the two Mumia species, a novel species, Mumia zhuanghuii sp. nov., is proposed. The type strain is Z350T (=CGMCC 4.7464T=DSM 106288T).


2015 ◽  
Vol 61 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Anatoly Bobrov ◽  
Vasiliy D. Kravchenko ◽  
Günter C. Müller

Tannins, which are polyphenols present in various plants, have anti-nutritional activity; however, their negative effects are mitigated by the presence of tannin-degrading microorganisms in the gastrointestinal tract of animals. This has never been investigated in the plateau zokor (Myospalax baileyi) – the predominant small herbivore in the alpine meadow ecosystem of Qinghai Province, China – which consumes tannin-rich herbaceous plants. Tannase activity in the feces of the plateau zokor increased from June to August corresponding to the increase in hydrolyzable tannin concentrations in plants during this period, and three tannin-degrading facultative anaerobic strains (designated as E1, E2, and E3) were isolated from the cecum of these animals. Sequencing of the 16S rDNA gene identified isolates of strain E1 as belonging to the genusEnterococcus, and E2 and E3 to the genusBacillus. All of the bacteria had cellulose-degrading capacity. This study provides the first evidence of symbiotic bacterial strains that degrade tannic acid and cellulose in the cecum of plateau zokor.


2020 ◽  
Vol 70 (4) ◽  
pp. 2318-2324 ◽  
Author(s):  
Zhi Tian ◽  
Dezhu Zhang ◽  
Shan Lu ◽  
Dong Jin ◽  
Jing Yang ◽  
...  

Four novel bacterial strains, designated Z294T, Z311, Z443T and Z446, were isolated from the intestinal contents of plateau pika (Ochotona curzoniae) on the Qinghai–Tibet Plateau of China. Cells were Gram-stain-positive, catalase-positive, oxidase-negative, aerobic, non-motile and short-rod shaped. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the four isolates belong to the genus Georgenia , but clearly separate from the currently recognized species. Both type strains (Z294T and Z443T) shared low 16S rRNA gene sequence similarity, digital DNA–DNA hybridization relatedness and average nucleotide identity values with Georginia satyanarayanai NBRC 107612T, G. subflava JCM 19765T, G. ruanii JCM 15130T and G. thermotolerans DSM 21501T and against each other. The genomic DNA G+C contents of strains Z294T and Z443T were 73.3 and 70 %, respectively. The major cellular fatty acids of strain Z294T were anteiso-C15 : 0, anteiso-C15 : 1 A and C16 : 0, in contrast to anteiso-C15 : 0 and anteiso-C15 : 1 A for strain Z443T. Both type strains (Z294T and Z443T) shared the following common features: glucose, rhamnose and ribose as cell-wall sugars; MK-8(H4) as major menaquinone; alanine, glutamic acid and lysine as cell-wall amino acids; and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and one unidentified phosphoglycolipid as polar lipids. Comparing the phenotypic and phylogenetic features among the four strains and their related organisms, strains Z294T and Z443T represent two novel species within the genus Georgenia , for which the names Georgenia wutianyii sp. nov. (type strain Z294T=CGMCC 1.16428T=DSM 106344T) and Georgenia yuyongxinii sp. nov. (type strain Z443T=CGMCC 1.16435T=DSM 106174T) are proposed.


2021 ◽  
Author(s):  
Jun Qiu ◽  
Cang Ma ◽  
Fang-Fang Li

Plateau pikas (Ochotona curzoniae) are regarded as one of the main reasons for the degradation of alpine meadows in the Qinghai-Tibet Plateau (QTP). The population density of plateau pikas is directly related to the degree of grassland damage. In this study, a one-week field observation was conducted in the southeastern QTP in August 2019. Based on the photos and videos, the random encounter model (REM) was used to estimate the population density of plateau pikas, and the frequency of different behaviors was counted. The effects of water source distance and terrain on the distribution of plateau pikas were also investigated. In addition, the frequency of different behaviors of plateau pikas under different population densities was also explored. The observations and knowledge derived from this study provide a reference for the population control of plateau pikas.


2016 ◽  
Author(s):  
Zhijia Ci ◽  
Fei Peng ◽  
Xian Xue ◽  
Xiaoshan Zhang

Abstract. The pattern of air–surface gaseous mercury (mainly Hg(0)) exchange in the Qinghai-Tibet Plateau (QTP) may be unique because this region is characterized by low temperature, great temperature variation, intensive solar radiation, and pronounced freeze-thaw process of permafrost soils. However, air–surface Hg(0) flux in the QTP is poorly investigated. In this study, we performed filed measurements and controlled field experiments with dynamic flux chambers technique to examine the flux, temporal variation and influencing factors of air–surface Hg(0) exchange at a high-altitude (4700 m a.s.l.) and remote site in the central QTP. The results of field measurements showed that surface soils were net emission source of Hg(0) in the entire study. Hg(0) flux showed remarkable seasonality with net high emission in the warm campaigns and net low deposition in winter campaign, and also showed the diurnal pattern with emission in daytime and deposition in nighttime, especially on days without precipitation. Rainfall events on the dry soils induced large and immediate increase in Hg(0) emission. Snowfall events did not induce the pulse of Hg(0) emission, but snow melt resulted in the immediate increase in Hg(0) emission. Daily Hg(0) fluxes on rainy or snowy days were higher than those of days without precipitation. Controlled field experiments suggested that water addition to dry soils significantly increased Hg(0) emission both in short and relatively long timescales, and also showed that UV radiation was primarily attributed to Hg(0) emission in the daytime. Our findings imply that a warm climate and environmental change could facilitate Hg release from the permafrost terrestrial ecosystem in the QTP.


Sign in / Sign up

Export Citation Format

Share Document