scholarly journals Aerobic growth physiology of Saccharomyces cerevisiae on sucrose is strain-dependent

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Carla Inês Soares Rodrigues ◽  
Aljoscha Wahl ◽  
Andreas K Gombert

ABSTRACT Present knowledge on the quantitative aerobic physiology of the yeast Saccharomyces cerevisiae during growth on sucrose as sole carbon and energy source is limited to either adapted cells or to the model laboratory strain CEN.PK113-7D. To broaden our understanding of this matter and open novel opportunities for sucrose-based biotechnological processes, we characterized three strains, with distinct backgrounds, during aerobic batch bioreactor cultivations. Our results reveal that sucrose metabolism in S. cerevisiae is a strain-specific trait. Each strain displayed distinct extracellular hexose concentrations and invertase activity profiles. Especially, the inferior maximum specific growth rate (0.21 h-1) of the CEN.PK113-7D strain, with respect to that of strains UFMG-CM-Y259 (0.37 h-1) and JP1 (0.32 h-1), could be associated to its low invertase activity (0.04–0.09 U/mgDM). Moreover, comparative experiments with glucose or fructose alone, or in combination, suggest mixed mechanisms of sucrose utilization by the industrial strain JP1, and points out the remarkable ability of the wild isolate UFMG-CM-259 to grow faster on sucrose than on glucose in a well-controlled cultivation system. This work hints to a series of metabolic traits that can be exploited to increase sucrose catabolic rates and bioprocess efficiency.


2021 ◽  
Author(s):  
Carla Inês Soares Rodrigues ◽  
Aljoscha Wahl ◽  
Andreas K. Gombert

AbstractPresent knowledge on the quantitative aerobic physiology of the yeast Saccharomyces cerevisiae during growth on sucrose as sole carbon and energy source is limited to either adapted cells or to the model laboratory strain CEN.PK113-7D. To broaden our understanding of this matter and open novel opportunities for sucrose-based biotechnological processes, we characterized three strains, with distinct backgrounds, during aerobic batch bioreactor cultivations. Our results reveal that sucrose metabolism in S. cerevisiae is a strain-specific trait. Each strain displayed a distinct extracellular hexose concentration and invertase activity profiles. Especially, the inferior maximum specific growth rate (0.21 h−1) of the CEN.PK113-7D strain, with respect to that of strains UFMG-CM-Y259 (0.37 h−1) and JP1 (0.32 h−1), could be associated to its low invertase activity (0.04 to 0.09 U mgDM−1). Moreover, comparative experiments with glucose or fructose alone, or in combination, suggest mixed mechanisms of sucrose utilization by the industrial strain JP1, and points out the remarkable ability of the wild isolate UFMG-CM-259 to grow faster on sucrose than on glucose in a well-controlled cultivation system. This work hints to a series of metabolic traits that can be exploited to increase sucrose catabolic rates and bioprocess efficiency.Abstract Figure



PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0248382
Author(s):  
Emanuela Palomba ◽  
Valentina Tirelli ◽  
Elisabetta de Alteriis ◽  
Palma Parascandola ◽  
Carmine Landi ◽  
...  

The yeast Saccharomyces cerevisiae is a reference model system and one of the widely used microorganisms in many biotechnological processes. In industrial yeast applications, combined strategies aim to maximize biomass/product yield, with the fed-batch culture being one of the most frequently used. Flow cytometry (FCM) is widely applied in biotechnological processes and represents a key methodology to monitor cell population dynamics. We propose here an application of FCM in the analysis of yeast cell cycle along the time course of a typical S. cerevisiae fed-batch culture. We used two different dyes, SYTOX Green and SYBR Green, with the aim to better define each stage of cell cycle during S. cerevisiae fed-batch culture. The results provide novel insights in the use of FCM cell cycle analysis for the real-time monitoring of S. cerevisiae bioprocesses.



2017 ◽  
Vol 7 (7) ◽  
pp. 2219-2226 ◽  
Author(s):  
Kinnari Matheson ◽  
Lance Parsons ◽  
Alison Gammie

Abstract The yeast Saccharomyces cerevisiae has emerged as a superior model organism. Selection of distinct laboratory strains of S. cerevisiae with unique phenotypic properties, such as superior mating or sporulation efficiencies, has facilitated advancements in research. W303 is one such laboratory strain that is closely related to the first completely sequenced yeast strain, S288C. In this work, we provide a high-quality, annotated genome sequence for W303 for utilization in comparative analyses and genome-wide studies. Approximately 9500 variations exist between S288C and W303, affecting the protein sequences of ∼700 genes. A listing of the polymorphisms and divergent genes is provided for researchers interested in identifying the genetic basis for phenotypic differences between W303 and S288C. Several divergent functional gene families were identified, including flocculation and sporulation genes, likely representing selection for desirable laboratory phenotypes. Interestingly, remnants of ancestor wine strains were found on several chromosomes. Finally, as a test of the utility of the high-quality reference genome, variant mapping revealed more accurate identification of accumulated mutations in passaged mismatch repair-defective strains.



2020 ◽  
Vol 21 (21) ◽  
pp. 7985
Author(s):  
Nobuo Fukuda

Sexual reproduction is almost a universal feature of eukaryotic organisms, which allows the reproduction of new organisms by combining the genetic information from two individuals of different sexes. Based on the mechanism of sexual reproduction, crossbreeding provides an attractive opportunity to improve the traits of animals, plants, and fungi. The budding yeast Saccharomyces cerevisiae has been widely utilized in fermentative production since ancient times. Currently it is still used for many essential biotechnological processes including the production of beer, wine, and biofuels. It is surprising that many yeast strains used in the industry exhibit low rates of sporulation resulting in limited crossbreeding efficiency. Here, I provide an overview of the recent findings about infertility challenges of yeasts domesticated for fermentation along with the progress in crossbreeding technologies. The aim of this review is to create an opportunity for future crossbreeding of yeasts used for fermentation.



2021 ◽  
Author(s):  
Goldie Libby Sherr ◽  
Chang-Hui Shen

Exposure of the yeast Saccharomyces cerevisiae to environmental stress can influence cell growth, physiology and differentiation, and thus result in a cell’s adaptive response. During the course of an adaptive response, the yeast vacuoles play an important role in protecting cells from stress. Vacuoles are dynamic organelles that are similar to lysosomes in mammalian cells. The defect of a lysosome’s function may cause various genetic and neurodegenerative diseases. The multi-subunit V-ATPase is the main regulator for vacuolar function and its activity plays a significant role in maintaining pH homeostasis. The V-ATPase is an ATP-driven proton pump which is required for vacuolar acidification. It has also been demonstrated that phospholipid biosynthetic genes might influence vacuolar morphology and function. However, the mechanistic link between phospholipid biosynthetic genes and vacuolar function has not been established. Recent studies have demonstrated that there is a regulatory role of Pah1p, a phospholipid biosynthetic gene, in V-ATPase disassembly and activity. Therefore, in this chapter we will use Saccharomyces cerevisiae as a model to discuss how Pah1p affects V-ATPase disassembly and activity and how Pah1p negatively affect vacuolar function. Furthermore, we propose a hypothesis to describe how Pah1p influences vacuolar function and programmed cell death through the regulation of V-ATPase.



Author(s):  
Elvira A. Islammagomedova ◽  
Eslanda A. Khalilova ◽  
Rasul Z. Gasanov ◽  
Aida A. Abakarova ◽  
Dinara A. Aliverdieva

The resistance of the yeast Saccharomyces cerevisiae DAW-3а and Y-503 to the conditions of extreme values of pH, NaCl, temperature has been studied. Under different cultivation modes, the rounded shape of DAW-3a cells is pre-served and this parameter Y-503 changes. Under conditions of different pH values and 30°C, the maximum sizes of cells and giant colonies of the polyploid Y-503 strain were found in comparison with the haploid DAW-3a; at 37°C, the advantage of Y-503 was not observed and the colony sizes of both strains were practically the same. The reaction of the strains to critical concentrations of NaCl in the medium was identical: a decrease in the size of cells and colonies was found; change in the shape, surface, color and structure of colonies. Under conditions of the simultaneous influence of an elevated temperature of 37°C, a wide range of pH and 5 % NaCl, the cell size decreased slightly; under neutral and alkaline conditions of cultivation, a slightly greater tolerance of yeast to salt stress was established; a decrease in the size of giant colonies was found, while the maximum size of the studied strains was noted at pH 11.0, the minimum at pH 3.0. The study of the tolerance of the yeast S. cerevisiae DAW-3a and Y-503 to extreme factors is of particular interest in connection with the possibility of using stress-resistant strains in biotechnological processes.



3 Biotech ◽  
2020 ◽  
Vol 10 (8) ◽  
Author(s):  
Valkirea Matos Nascimento ◽  
Gabriela Totino Ulian Antoniolli ◽  
Rodrigo Simões Ribeiro Leite ◽  
Gustavo Graciano Fonseca


2021 ◽  
Author(s):  
Massimo Sanchez ◽  
Emanuela Palomba ◽  
Valentina Tirelli ◽  
Elisabetta de Alteriis ◽  
Carmine Landi ◽  
...  

The yeast Saccharomyces cerevisiae is a reference model system and one of the widely used microorganisms in many biotechnological processes. In industrial yeast applications, combined strategies aim to maximize biomass/product yield, with the fed-batch culture being one of the most frequently used. Flow cytometry (FCM) is widely applied in biotechnological processes and represents a key methodology to monitor cell population dynamics. We propose here an application of FCM in the analysis of yeast cell cycle along the time course of a typical S. cerevisiae fed-batch culture. We used two different dyes, SYTOX Green and SYBR Green, with the aim to better define each stage of cell cycle during S. cerevisiae fed-batch culture. The results provide novel insights in the use of FCM cell cycle analysis for the real-time monitoring of S. cerevisiae bioprocesses.



1981 ◽  
Vol 31 (1) ◽  
pp. 290-294 ◽  
Author(s):  
Robert D. Tanner ◽  
L. Daniel Richmond ◽  
Chia-Jenn Wei ◽  
Jonathan Woodward


Sign in / Sign up

Export Citation Format

Share Document