scholarly journals Multiple Alu exonization in 3’UTR of a primate specific isoform of CYP20A1 creates a potential miRNA sponge

Author(s):  
Aniket Bhattacharya ◽  
Vineet Jha ◽  
Khushboo Singhal ◽  
Mahar Fatima ◽  
Dayanidhi Singh ◽  
...  

Abstract Alu repeats contribute to phylogenetic novelties in conserved regulatory networks in primates. Our study highlights how exonized Alus could nucleate large-scale mRNA-miRNA interactions. Using a functional genomics approach, we characterize a transcript isoform of an orphan gene, CYP20A1 (CYP20A1_Alu-LT) that has exonization of 23 Alus in its 3’UTR. CYP20A1_Alu-LT, confirmed by 3’RACE, is an outlier in length (9 kb 3’UTR) and widely expressed. Using publically available datasets, we demonstrate its expression in higher primates and presence in single nucleus RNA-seq of 15928 human cortical neurons. miRanda predicts ∼4700 miRNA recognition elements (MREs) for ∼1000 miRNAs, primarily originated within these 3’UTR-Alus. CYP20A1_Alu-LT could be a potential multi-miRNA sponge as it harbors ≥10 MREs for 140 miRNAs and has cytosolic localization. We further tested whether expression of CYP20A1_Alu-LT correlates with mRNAs harboring similar MRE targets. RNA-seq with conjoint miRNA-seq analysis was done in primary human neurons where we observed CYP20A1_Alu-LT to be downregulated during heat shock response and upregulated in HIV1-Tat treatment. 380 genes were positively correlated with its expression (significantly downregulated in heat shock and upregulated in Tat) and they harbored MREs for nine expressed miRNAs which were also enriched in CYP20A1_Alu-LT. MREs were significantly enriched in these 380 genes compared to random sets of differentially expressed genes (p = 8.134e-12). Gene ontology suggested involvement of these genes in neuronal development and hemostasis pathways thus proposing a novel component of Alu-miRNA mediated transcriptional modulation that could govern specific physiological outcomes in higher primates.

2020 ◽  
Author(s):  
Aniket Bhattacharya ◽  
Vineet Jha ◽  
Khushboo Singhal ◽  
Mahar Fatima ◽  
Dayanidhi Singh ◽  
...  

Abstract Background: Alu repeats contribute to phylogenetic novelties in conserved regulatory networks in primates. Exaptation of Alus in transcript isoforms could nucleate large-scale mRNA-miRNA interactions and modulate cellular outcomes. Result: Using a functional genomics approach, we report a transcript isoform of an orphan gene, CYP20A1 (CYP20A1_Alu-LT) that arise through exonization of 23 Alus in 3’UTR and is expressed in higher primates. CYP20A1_Alu-LT, confirmed by 3’RACE, is an outlier in length (9kb) and is expressed in multiple cell lines. Using publicly available datasets, we demonstrate its presence in single nucleus RNA-seq of 15928 human cortical neurons (including rosehip neurons). miRanda predicts ~4700 miRNA recognition elements (MREs; with threshold< -25kcal/mol) for ~1000 miRNAs, which have primarily originated within the 3’UTR-Alus post exonization. CYP20A1_Alu-LT could be a potential multi-miRNA sponge as it harbours ≥10 MREs for 140 miRNAs and has cytosolic localization. In order to test this further, we explored whether expression of CYP20A1_Alu-LT correlates with genome wide mRNAs harboring similar MRE targets. We carried out RNAseq with conjoint miRNA-seq analysis in primary human neurons as we observed CYP20A1_Alu-LT to be downregulated during heat shock response and upregulated in HIV1-Tat treatment. CYP20A1_Alu-LT expression was positively correlated with 380 genes that were significantly downregulated in heat shock and upregulated in Tat and harboured MREs for a set of nine expressed miRNAs that were also enriched in CYP20A1_Alu-LT. The enrichment of MREs in the 380 genes were significant compared to random sets of expressed (p=4.716e-12) as well as differentially expressed genes (p=8.134e-12). Gene ontology suggested involvement of these genes in neuronal development and hemostasis pathways. Conclusion: Our study suggests a potential role for CYP20A1_Alu-LT as miRNA sponge due to significant enrichment of MREs within Alus in a transcript isoform specific manner. This highlights a novel component of Alu-miRNA mediated transcriptional modulation that could govern specific physiological outcomes in higher primates.


2020 ◽  
Author(s):  
Aniket Bhattacharya ◽  
Vineet Jha ◽  
Khushboo Singhal ◽  
Mahar Fatima ◽  
Dayanidhi Singh ◽  
...  

Abstract Background: Alu repeats contribute to phylogenetic novelties in conserved regulatory networks in primates. Exaptation of Alus in transcript isoforms could nucleate large-scale mRNA-miRNA interactions and modulate cellular outcomes. Result: Using a functional genomics approach, we report a transcript isoform of an orphan gene, CYP20A1 (CYP20A1_Alu-LT) that arise through exonization of 23 Alus in 3’UTR and is expressed in higher primates. CYP20A1_Alu-LT, confirmed by 3’RACE, is an outlier in length (9kb) and is expressed in multiple cell lines. We demonstrate its presence in single nucleus RNA-seq of ~16000 human cortical neurons (including rosehip neurons). Most strikingly, miRanda predicts ~4700 miRNA recognition elements (MREs; with threshold< -25kcal/mol) for ~1000 miRNAs, which have primarily originated within the 3’UTR-Alus post exonization. CYP20A1_Alu-LT could be a potential multi- miRNA sponge as it harbours - ≥10 MREs for 140 miRNAs and has cytosolic localization. In order to test this further, we explored whether expression of CYP20A1_Alu-LT correlates with genome wide mRNAs harboring similar MRE targets. We carried out RNAseq with conjoint miRNAseq analysis in primary human neurons as we observed CYP20A1_Alu-LT to be downregulated during heat shock response and upregulated in HIV1-Tat treatment. CYP20A1_Alu-LT expression was positively correlated with 380 genes that were significantly downregulated in heat shock and upregulated in Tat and harboured MREs for a set of nine expressed miRNAs that were also enriched in CYP20A1_Alu-LT. The enrichment of MREs in the 380 genes were significant compared to random sets of expressed (p=4.716e-12) as well as differentially expressed genes (p=8.134e-12). Gene ontology revealed involvement of these genes in neuronal development and hemostasis pathways. Conclusion: We demonstrate a potential role for CYP20A1_Alu-LT as miRNA sponge due to significant enrichment of MREs within Alus in a transcript isoform specific manner. This highlights a novel component of Alu-miRNA mediated transcriptional modulation that could govern specific physiological outcomes in higher primates.


2020 ◽  
Author(s):  
Aniket Bhattacharya ◽  
Vineet Jha ◽  
Khushboo Singhal ◽  
Mahar Fatima ◽  
Dayanidhi Singh ◽  
...  

Abstract Background: Primate-specific Alus contribute to transcriptional novelties in conserved gene regulatory networks. Alu RNAs are present at elevated levels in stress conditions and consequently leads to transcript isoform specific functional role modulating the physiological outcome. One of the possible mechanisms could be Alu nucleated mRNA-miRNA interplay. Result: Using combination of bioinformatics and experiments, we report a transcript isoform of an orphan gene, CYP20A1 ( CYP20A1_Alu-LT ) through exaptation of 23 Alus in its 9kb 3’UTR. CYP20A1_Alu-LT , confirmed by 3’RACE, is an outlier in length and expressed in multiple cell lines. We demonstrate its presence in single nucleus RNA-seq of ~16000 human cortical neurons (including rosehip neurons). Its expression is restricted to the higher primates. Most strikingly, miRanda predicts ~4700 miRNA recognition elements (MREs; with threshold< -25kcal/mol) for ~1000 miRNAs, which have majorly originated within the 3’UTR-Alus post exaptation. We hypothesized that differential expression of this transcript could modulate mRNA-miRNA networks and tested it in primary human neurons where CYP20A1_Alu-LT is downregulated during heat shock response and upregulated upon HIV1-Tat treatment. CYP20A1_Alu-LT could possibly function as a miRNA sponge as it exhibits features of a sponge RNA such as cytosolic localization and ≥10 MREs for 140 miRNAs. Small RNA-seq revealed expression of nine miRNAs that can potentially be sponged by CYP20A1_Alu-LT in neurons. Additionally, CYP20A1_Alu-LT expression was positively correlated (low in heat shock and high in Tat) with 380 differentially expressed genes that contain cognate MREs for these nine miRNAs. This set is enriched in genes involved in neuronal development and hemostasis pathways. Conclusion: We demonstrate a potential role for CYP20A1_Alu-LT as miRNA sponge through preferential presence of MREs within Alus in a transcript isoform specific manner. This highlights a novel component of Alu-miRNA mediated transcriptional modulation leading to physiological homeostasis.


2019 ◽  
Author(s):  
Aniket Bhattacharya ◽  
Vineet Jha ◽  
Khushboo Singhal ◽  
Mahar Fatima ◽  
Dayanidhi Singh ◽  
...  

AbstractBackgroundPrimate-specific Alus contribute to transcriptional novelties in conserved gene regulatory networks. Alu RNAs are present at elevated levels in stress conditions and consequently leads to transcript isoform specific functional role modulating the physiological outcome. One of the possible mechanisms could be Alu nucleated mRNA-miRNA interplay.ResultUsing combination of bioinformatics and experiments, we report a transcript isoform of an orphan gene, CYP20A1 (CYP20A1_Alu-LT) through exaptation of 23 Alus in its 9kb 3’UTR. CYP20A1_Alu-LT, confirmed by 3’RACE, is an outlier in length and expressed in multiple cell lines. We demonstrate its presence in single nucleus RNA-seq of ∼16000 human cortical neurons (including rosehip neurons). Its expression is restricted to the higher primates. Most strikingly, miRanda predicts ∼4700 miRNA recognition elements (MREs; with threshold< −25kcal/mol) for ∼1000 miRNAs, which have majorly originated within the 3’UTR-Alus post exaptation. We hypothesized that differential expression of this transcript could modulate mRNA-miRNA networks and tested it in primary human neurons where CYP20A1_Alu-LT is downregulated during heat shock response and upregulated upon HIV1-Tat treatment. CYP20A1_Alu-LT could possibly function as a miRNA sponge as it exhibits features of a sponge RNA such as cytosolic localization and ≥10 MREs for 140 miRNAs. Small RNA-seq revealed expression of nine miRNAs that can potentially be sponged by CYP20A1_Alu-LT in neurons. Additionally, CYP20A1_Alu-LT expression was positively correlated (low in heat shock and high in Tat) with 380 differentially expressed genes that contain cognate MREs for these nine miRNAs. This set is enriched in genes involved in neuronal development and hemostasis pathways.ConclusionWe demonstrate a potential role for CYP20A1_Alu-LT as miRNA sponge through preferential presence of MREs within Alus in a transcript isoform specific manner. This highlights a novel component of Alu-miRNA mediated transcriptional modulation leading to physiological homeostasis.


2019 ◽  
Author(s):  
Ning Wang ◽  
Andrew E. Teschendorff

AbstractInferring the activity of transcription factors in single cells is a key task to improve our understanding of development and complex genetic diseases. This task is, however, challenging due to the relatively large dropout rate and noisy nature of single-cell RNA-Seq data. Here we present a novel statistical inference framework called SCIRA (Single Cell Inference of Regulatory Activity), which leverages the power of large-scale bulk RNA-Seq datasets to infer high-quality tissue-specific regulatory networks, from which regulatory activity estimates in single cells can be subsequently obtained. We show that SCIRA can correctly infer regulatory activity of transcription factors affected by high technical dropouts. In particular, SCIRA can improve sensitivity by as much as 70% compared to differential expression analysis and current state-of-the-art methods. Importantly, SCIRA can reveal novel regulators of cell-fate in tissue-development, even for cell-types that only make up 5% of the tissue, and can identify key novel tumor suppressor genes in cancer at single cell resolution. In summary, SCIRA will be an invaluable tool for single-cell studies aiming to accurately map activity patterns of key transcription factors during development, and how these are altered in disease.


2021 ◽  
Author(s):  
Ryohei Iwata ◽  
Pierre Casimir ◽  
Emir Erkol ◽  
Leila Boubakar ◽  
Melanie Planque ◽  
...  

The evolution of species involves changes in the timeline of key developmental programs. Among these, neuronal development is considerably prolonged in the human cerebral cortex compared with other mammals, leading to brain neoteny. Here we explore whether mitochondria influence the species-specific properties of cortical neuron maturation. By comparing human and mouse cortical neuronal maturation at high temporal and cell resolution, we found a slower pattern of mitochondria development in human cortical neurons compared with the mouse, together with lower mitochondria metabolic activity, particularly oxidative phosphorylation. Stimulation of mitochondria metabolism in human neurons resulted in accelerated maturation, leading to excitable and complex cells weeks ahead of time. Our data identify mitochondria as important regulators of the pace of neuronal development underlying human-specific features of brain evolution.


2021 ◽  
Author(s):  
Matti Hoch ◽  
Suchi Smita Gupta ◽  
Konstantin Cesnulevicius ◽  
David Lescheid ◽  
Myron Schultz ◽  
...  

Disease maps have emerged as computational knowledge bases for exploring and modeling disease-specific molecular processes. By capturing molecular interactions, disease-associated processes, and phenotypes in standardized representations, disease maps provide a platform for applying bioinformatics and systems biology approaches. Applications range from simple map exploration to algorithm-driven target discovery and network perturbation. The web-based MINERVA environment for disease maps provides a platform to develop tools not only for mapping experimental data but also to identify, analyze and simulate disease-specific regulatory networks. We have developed a MINERVA plugin suite based on network topology and enrichment analyses that facilitate multi-omics data integration and enable in silico perturbation experiments on disease maps. We demonstrate workflows by analyzing two RNA-seq datasets on the Atlas of Inflammation Resolution (AIR). Our approach improves usability and increases the functionality of disease maps by providing easy access to available data and integration of self-generated data. It supports efficient and intuitive analysis of omics data, with a focus on disease maps.


2017 ◽  
Vol 34 (10) ◽  
pp. 1733-1740 ◽  
Author(s):  
Xi Chen ◽  
Jinghua Gu ◽  
Xiao Wang ◽  
Jin-Gyoung Jung ◽  
Tian-Li Wang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lin Que ◽  
David Lukacsovich ◽  
Wenshu Luo ◽  
Csaba Földy

AbstractThe diversity reflected by >100 different neural cell types fundamentally contributes to brain function and a central idea is that neuronal identity can be inferred from genetic information. Recent large-scale transcriptomic assays seem to confirm this hypothesis, but a lack of morphological information has limited the identification of several known cell types. In this study, we used single-cell RNA-seq in morphologically identified parvalbumin interneurons (PV-INs), and studied their transcriptomic states in the morphological, physiological, and developmental domains. Overall, we find high transcriptomic similarity among PV-INs, with few genes showing divergent expression between morphologically different types. Furthermore, PV-INs show a uniform synaptic cell adhesion molecule (CAM) profile, suggesting that CAM expression in mature PV cells does not reflect wiring specificity after development. Together, our results suggest that while PV-INs differ in anatomy and in vivo activity, their continuous transcriptomic and homogenous biophysical landscapes are not predictive of these distinct identities.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii311-iii312
Author(s):  
Bernhard Englinger ◽  
Johannes Gojo ◽  
Li Jiang ◽  
Jens M Hübner ◽  
McKenzie L Shaw ◽  
...  

Abstract Ependymoma represents a heterogeneous disease affecting the entire neuraxis. Extensive molecular profiling efforts have identified molecular ependymoma subgroups based on DNA methylation. However, the intratumoral heterogeneity and developmental origins of these groups are only partially understood, and effective treatments are still lacking for about 50% of patients with high-risk tumors. We interrogated the cellular architecture of ependymoma using single cell/nucleus RNA-sequencing to analyze 24 tumor specimens across major molecular subgroups and anatomic locations. We additionally analyzed ten patient-derived ependymoma cell models and two patient-derived xenografts (PDXs). Interestingly, we identified an analogous cellular hierarchy across all ependymoma groups, originating from undifferentiated neural stem cell-like populations towards different degrees of impaired differentiation states comprising neuronal precursor-like, astro-glial-like, and ependymal-like tumor cells. While prognostically favorable ependymoma groups predominantly harbored differentiated cell populations, aggressive groups were enriched for undifferentiated subpopulations. Projection of transcriptomic signatures onto an independent bulk RNA-seq cohort stratified patient survival even within known molecular groups, thus refining the prognostic power of DNA methylation-based profiling. Furthermore, we identified novel potentially druggable targets including IGF- and FGF-signaling within poorly prognostic transcriptional programs. Ependymoma-derived cell models/PDXs widely recapitulated the transcriptional programs identified within fresh tumors and are leveraged to validate identified target genes in functional follow-up analyses. Taken together, our analyses reveal a developmental hierarchy and transcriptomic context underlying the biologically and clinically distinct behavior of ependymoma groups. The newly characterized cellular states and underlying regulatory networks could serve as basis for future therapeutic target identification and reveal biomarkers for clinical trials.


Sign in / Sign up

Export Citation Format

Share Document