scholarly journals Leveraging high-powered RNA-Seq datasets to improve inference of regulatory activity in single-cell RNA-Seq data

2019 ◽  
Author(s):  
Ning Wang ◽  
Andrew E. Teschendorff

AbstractInferring the activity of transcription factors in single cells is a key task to improve our understanding of development and complex genetic diseases. This task is, however, challenging due to the relatively large dropout rate and noisy nature of single-cell RNA-Seq data. Here we present a novel statistical inference framework called SCIRA (Single Cell Inference of Regulatory Activity), which leverages the power of large-scale bulk RNA-Seq datasets to infer high-quality tissue-specific regulatory networks, from which regulatory activity estimates in single cells can be subsequently obtained. We show that SCIRA can correctly infer regulatory activity of transcription factors affected by high technical dropouts. In particular, SCIRA can improve sensitivity by as much as 70% compared to differential expression analysis and current state-of-the-art methods. Importantly, SCIRA can reveal novel regulators of cell-fate in tissue-development, even for cell-types that only make up 5% of the tissue, and can identify key novel tumor suppressor genes in cancer at single cell resolution. In summary, SCIRA will be an invaluable tool for single-cell studies aiming to accurately map activity patterns of key transcription factors during development, and how these are altered in disease.

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Andrew E. Teschendorff ◽  
Ning Wang

Abstract Tissue-specific transcription factors are frequently inactivated in cancer. To fully dissect the heterogeneity of such tumor suppressor events requires single-cell resolution, yet this is challenging because of the high dropout rate. Here we propose a simple yet effective computational strategy called SCIRA to infer regulatory activity of tissue-specific transcription factors at single-cell resolution and use this tool to identify tumor suppressor events in single-cell RNA-Seq cancer studies. We demonstrate that tissue-specific transcription factors are preferentially inactivated in the corresponding cancer cells, suggesting that these are driver events. For many known or suspected tumor suppressors, SCIRA predicts inactivation in single cancer cells where differential expression does not, indicating that SCIRA improves the sensitivity to detect changes in regulatory activity. We identify NKX2-1 and TBX4 inactivation as early tumor suppressor events in normal non-ciliated lung epithelial cells from smokers. In summary, SCIRA can help chart the heterogeneity of tumor suppressor events at single-cell resolution.


2020 ◽  
Author(s):  
Andrew E. Teschendorff ◽  
Ning Wang

AbstractTissue-specific transcription factors are frequently inactivated in cancer. To fully dissect the heterogeneity of such tumor suppressor events requires single-cell resolution, yet this is challenging because of the high dropout rate. Here we propose a simple yet effective computational strategy called SCIRA to infer regulatory activity of tissue-specific transcription factors at single-cell resolution and use this tool to identify tumor suppressor events in single-cell RNA-Seq cancer studies. We demonstrate that tissue-specific transcription factors are preferentially inactivated in the corresponding cancer cells, suggesting that these are driver events. For many known or suspected tumor suppressors, SCIRA predicts inactivation in single cancer cells where differential expression does not, indicating that SCIRA improves the sensitivity to detect changes in regulatory activity. We identify NKX2-1 and TBX4 inactivation as early tumor suppressor events in normal non-ciliated lung epithelial cells from smokers. In summary, SCIRA can help chart the heterogeneity of tumor suppressor events at single-cell resolution.


Open Biology ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 170030 ◽  
Author(s):  
Peng Dong ◽  
Zhe Liu

Animal development is orchestrated by spatio-temporal gene expression programmes that drive precise lineage commitment, proliferation and migration events at the single-cell level, collectively leading to large-scale morphological change and functional specification in the whole organism. Efforts over decades have uncovered two ‘seemingly contradictory’ mechanisms in gene regulation governing these intricate processes: (i) stochasticity at individual gene regulatory steps in single cells and (ii) highly coordinated gene expression dynamics in the embryo. Here we discuss how these two layers of regulation arise from the molecular and the systems level, and how they might interplay to determine cell fate and to control the complex body plan. We also review recent technological advancements that enable quantitative analysis of gene regulation dynamics at single-cell, single-molecule resolution. These approaches outline next-generation experiments to decipher general principles bridging gaps between molecular dynamics in single cells and robust gene regulations in the embryo.


2018 ◽  
Author(s):  
Nikos Konstantinides ◽  
Katarina Kapuralin ◽  
Chaimaa Fadil ◽  
Luendreo Barboza ◽  
Rahul Satija ◽  
...  

SummaryTranscription factors regulate the molecular, morphological, and physiological characters of neurons and generate their impressive cell type diversity. To gain insight into general principles that govern how transcription factors regulate cell type diversity, we used large-scale single-cell mRNA sequencing to characterize the extensive cellular diversity in the Drosophila optic lobes. We sequenced 55,000 single optic lobe neurons and glia and assigned them to 52 clusters of transcriptionally distinct single cells. We validated the clustering and annotated many of the clusters using RNA sequencing of characterized FACS-sorted single cell types, as well as marker genes specific to given clusters. To identify transcription factors responsible for inducing specific terminal differentiation features, we used machine-learning to generate a ‘random forest’ model. The predictive power of the model was confirmed by showing that two transcription factors expressed specifically in cholinergic (apterous) and glutamatergic (traffic-jam) neurons are necessary for the expression of ChAT and VGlut in many, but not all, cholinergic or glutamatergic neurons, respectively. We used a transcriptome-wide approach to show that the same terminal characters, including but not restricted to neurotransmitter identity, can be regulated by different transcription factors in different cell types, arguing for extensive phenotypic convergence. Our data provide a deep understanding of the developmental and functional specification of a complex brain structure.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhiyong Zeng ◽  
Junfang Lin ◽  
Kejie Zhang ◽  
Xizhe Guo ◽  
Xiaoqiang Zheng ◽  
...  

Abstract Background The development of multiple myeloma (MM) is considered to involve a multistep transformation process, but the role of cytogenetic abnormalities and molecular alterations in determining the cell fate of multiple myeloma (MM) remains unclear. Here, we have analyzed single cell RNA-seq data and bulk gene profiles to reveal a novel signature associated with MM development. Methods The scRNA-seq data from GSE118900 was used to profile the transcriptomes of cells from MM patients at different stages. Pseudotemporal ordering of the single cells was performed using Monocle package to feature distinct transcriptomic states of the developing MM cells. The bulk microarray profiles from GSE24080 and GSE9782 were applied to identify a signature associated with MM development. Results The 597 cells were divided into 7 clusters according to different risk levels. They were initiated mainly from monoclonal gammopathy of undetermined significance (MGUS), newly diagnosed MM (NDMM), or relapsed and/or refractory myeloma (RRMM) with cytogenetically favorable t(11;14), moved towards the cells from smoldering MM (SMM) or NDMM without t(11;14) or t(4;14), and then finally to cells from SMM or RRMM with t(4;14). Based on the markers identified in the late stage, the bulk data was used to develop a 20-gene signature stratifying patients into high and low-risk groups (GSE24080: HR = 3.759, 95% CI 2.746–5.145; GSE9782: HR = 2.612, 95% CI 1.894–3.603), which was better than the previously published gene signatures (EMC92, UAMS70, and UAMS17) and International Staging System. This signature also succeeded in predicting the clinical outcome of patients treated with bortezomib (HR = 2.884, 95% CI 1.994–4.172, P = 1.89e−8). The 20 genes were further verified by quantitative real-time polymerase chain reaction using samples obtained from the patients with MM. Conclusion Our comprehensive analyses offered new insights in MM development, and established a 20-gene signature as an independent biomarker for MM.


Author(s):  
Sai Guna Ranjan Gurazada ◽  
Kevin L. Cox, ◽  
Kirk J. Czymmek ◽  
Blake C. Meyers

Single-cell RNA-seq is a tool that generates a high resolution of transcriptional data that can be used to understand regulatory networks in biological systems. In plants, several methods have been established for transcriptional analysis in tissue sections, cell types, and/or single cells. These methods typically require cell sorting, transgenic plants, protoplasting, or other damaging or laborious processes. Additionally, the majority of these technologies lose most or all spatial resolution during implementation. Those that offer a high spatial resolution for RNA lack breadth in the number of transcripts characterized. Here, we briefly review the evolution of spatial transcriptomics methods and we highlight recent advances and current challenges in sequencing, imaging, and computational aspects toward achieving 3D spatial transcriptomics of plant tissues with a resolution approaching single cells. We also provide a perspective on the potential opportunities to advance this novel methodology in plants.


2018 ◽  
Author(s):  
Manu Setty ◽  
Vaidotas Kiseliovas ◽  
Jacob Levine ◽  
Adam Gayoso ◽  
Linas Mazutis ◽  
...  

AbstractRecent studies using single cell RNA-seq (scRNA-seq) data derived from differentiating systems have raised fundamental questions regarding the discrete vs continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells, which treats cell-fate as a probabilistic process, and leverages entropy to measure the changing nature of cell plasticity along the differentiation trajectory. Palantir generates a high resolution pseudotime ordering of cells, and assigns each cell state with its probability to differentiate into each terminal state. We apply Palantir to human bone marrow scRNA-seq data and detect key landmarks of hematopoietic differentiation. Palantir’s resolution enables identification of key transcription factors driving lineage fate choices, as these TFs closely track when cells lose plasticity. We demonstrate that Palantir is generalizable to diverse tissue types and well-suited to resolve less studied differentiating systems.


2017 ◽  
Author(s):  
Sara Aibar ◽  
Carmen Bravo González-Blas ◽  
Thomas Moerman ◽  
Jasper Wouters ◽  
Vân Anh Huynh-Thu ◽  
...  

AbstractSingle-cell RNA-seq allows building cell atlases of any given tissue and infer the dynamics of cellular state transitions during developmental or disease trajectories. Both the maintenance and transitions of cell states are encoded by regulatory programs in the genome sequence. However, this regulatory code has not yet been exploited to guide the identification of cellular states from single-cell RNA-seq data. Here we describe a computational resource, called SCENIC (Single Cell rEgulatory Network Inference and Clustering), for the simultaneous reconstruction of gene regulatory networks (GRNs) and the identification of stable cell states, using single-cell RNA-seq data. SCENIC outperforms existing approaches at the level of cell clustering and transcription factor identification. Importantly, we show that cell state identification based on GRNs is robust towards batch-effects and technical-biases. We applied SCENIC to a compendium of single-cell data from the mouse and human brain and demonstrate that the proper combinations of transcription factors, target genes, enhancers, and cell types can be identified. Moreover, we used SCENIC to map the cell state landscape in melanoma and identified a gene regulatory network underlying a proliferative melanoma state driven by MITF and STAT and a contrasting network controlling an invasive state governed by NFATC2 and NFIB. We further validated these predictions by showing that two transcription factors are predominantly expressed in early metastatic sentinel lymph nodes. In summary, SCENIC is the first method to analyze scRNA-seq data using a network-centric, rather than cell-centric approach. SCENIC is generic, easy to use, and flexible, and allows for the simultaneous tracing of genomic regulatory programs and the mapping of cellular identities emerging from these programs. Availability: SCENIC is available as an R workflow based on three new R/Bioconductor packages: GENIE3, RcisTarget and AUCell. As scalable alternative to GENIE3, we also provide GRNboost, paving the way towards the network analysis across millions of single cells.


2018 ◽  
Author(s):  
Luyi Tian ◽  
Jaring Schreuder ◽  
Daniela Zalcenstein ◽  
Jessica Tran ◽  
Nikolce Kocovski ◽  
...  

AbstractConventional single cell RNA-seq methods are destructive, such that a given cell cannot also then be tested for fate and function, without a time machine. Here, we develop a clonal method SIS-seq, whereby single cells are allowed to divide, and progeny cells are assayed separately in SISter conditions; some for fate, others by RNA-seq. By cross-correlating progenitor gene expression with mature cell fate within a clone, and doing this for many clones, we can identify the earliest gene expression signatures of dendritic cell subset development. SIS-seq could be used to study other populations harboring clonal heterogeneity, including stem, reprogrammed and cancer cells to reveal the transcriptional origins of fate decisions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Serrano-Ron ◽  
Javier Cabrera ◽  
Pablo Perez-Garcia ◽  
Miguel A. Moreno-Risueno

Over the last decades, research on postembryonic root development has been facilitated by “omics” technologies. Among these technologies, microarrays first, and RNA sequencing (RNA-seq) later, have provided transcriptional information on the underlying molecular processes establishing the basis of System Biology studies in roots. Cell fate specification and development have been widely studied in the primary root, which involved the identification of many cell type transcriptomes and the reconstruction of gene regulatory networks (GRN). The study of lateral root (LR) development has not been an exception. However, the molecular mechanisms regulating cell fate specification during LR formation remain largely unexplored. Recently, single-cell RNA-seq (scRNA-seq) studies have addressed the specification of tissues from stem cells in the primary root. scRNA-seq studies are anticipated to be a useful approach to decipher cell fate specification and patterning during LR formation. In this review, we address the different scRNA-seq strategies used both in plants and animals and how we could take advantage of scRNA-seq to unravel new regulatory mechanisms and reconstruct GRN. In addition, we discuss how to integrate scRNA-seq results with previous RNA-seq datasets and GRN. We also address relevant findings obtained through single-cell based studies and how LR developmental studies could be facilitated by scRNA-seq approaches and subsequent GRN inference. The use of single-cell approaches to investigate LR formation could help to decipher fundamental biological mechanisms such as cell memory, synchronization, polarization, or pluripotency.


Sign in / Sign up

Export Citation Format

Share Document