scholarly journals An Upper Limit on the Functional Fraction of the Human Genome

2017 ◽  
Vol 9 (7) ◽  
pp. 1880-1885 ◽  
Author(s):  
Dan Graur

AbstractFor the human population to maintain a constant size from generation to generation, an increase in fertility must compensate for the reduction in the mean fitness of the population caused, among others, by deleterious mutations. The required increase in fertility due to this mutational load depends on the number of sites in the genome that are functional, the mutation rate, and the fraction of deleterious mutations among all mutations in functional regions. These dependencies and the fact that there exists a maximum tolerable replacement level fertility can be used to put an upper limit on the fraction of the human genome that can be functional. Mutational load considerations lead to the conclusion that the functional fraction within the human genome cannot exceed 15%.

2020 ◽  
Vol 12 (4) ◽  
pp. 273-281 ◽  
Author(s):  
Benjamin Galeota-Sprung ◽  
Paul Sniegowski ◽  
Warren Ewens

Abstract The fraction of the human genome that is functional is a question of both evolutionary and practical importance. Studies of sequence divergence have suggested that the functional fraction of the human genome is likely to be no more than ∼15%. In contrast, the ENCODE project, a systematic effort to map regions of transcription, transcription factor association, chromatin structure, and histone modification, assigned function to 80% of the human genome. In this article, we examine whether and how an analysis based on mutational load might set a limit on the functional fraction. In order to do so, we characterize the distribution of fitness of a large, finite, diploid population at mutation-selection equilibrium. In particular, if mean fitness is ∼1, the fitness of the fittest individual likely to occur cannot be unreasonably high. We find that at equilibrium, the distribution of log fitness has variance nus, where u is the per-base deleterious mutation rate, n is the number of functional sites (and hence incorporates the functional fraction f), and s is the selection coefficient of deleterious mutations. In a large (N=109) reproducing population, the fitness of the fittest individual likely to exist is ∼e5nus. These results apply to both additive and recessive fitness schemes. Our approach is different from previous work that compared mean fitness at mutation-selection equilibrium with the fitness of an individual who has no deleterious mutations; we show that such an individual is exceedingly unlikely to exist. We find that the functional fraction is not very likely to be limited substantially by mutational load, and that any such limit, if it exists, depends strongly on the selection coefficients of new deleterious mutations.


2019 ◽  
Author(s):  
Benjamin Galeota-Sprung ◽  
Paul Sniegowski ◽  
Warren Ewens

AbstractThe fraction of the human genome that is functional is a question of both evolutionary and practical importance. Studies of sequence divergence have suggested that the functional fraction of the human genome is likely to be no more than ∼15%. In contrast, the ENCODE project, a systematic effort to map regions of transcription, transcription factor association, chromatin structure, and histone modification, assigned function to 80% of the human genome. In this paper we examine whether and how an analysis based on mutational load might set a limit on the functional fraction. In order to do so, we characterize the distribution of fitness of a large, finite, diploid population at mutation-selection equilibrium. In particular, if mean fitness is ∼1, the fitness of the fittest individual likely to occur cannot be unreasonably high. We find that at equilibrium, the distribution of log fitness has variance nus, where u is the per-base deleterious mutation rate, n is the number of functional sites (and hence incorporates the functional fraction f), and s is the selection coefficient of deleterious mutations. In a large (N = 109) reproducing population, the fitness of the fittest individual likely to exist is . These results apply to both additive and recessive fitness schemes. Our approach is different from previous work that compared mean fitness at mutation-selection equilibrium to the fitness of an individual who has no deleterious mutations; we show that such an individual is exceedingly unlikely to exist. We find that the functional fraction is not very likely to be limited substantially by mutational load, and that any such limit, if it exists, depends strongly on the selection coefficients of new deleterious mutations.


1999 ◽  
Vol 74 (1) ◽  
pp. 31-42 ◽  
Author(s):  
J. RONFORT

Single-locus equilibrium frequencies of a partially recessive deleterious mutation under the mutation–selection balance model are derived for partially selfing autotetraploid populations. Assuming multiplicative fitness interactions among loci, approximate solutions for the mean fitness and inbreeding depression values are also derived for the multiple locus case and compared with expectations for the diploid model. As in diploids, purging of deleterious mutations through consanguineous matings occurs in autotetraploid populations, i.e. the equilibrium mutation load is a decreasing function of the selfing rate. However, the variation of inbreeding depression with the selfing rate depends strongly on the dominance coefficients associated with the three heterozygous genotypes. Inbreeding depression can either increase or decrease with the selfing rate, and does not always vary monotonically. Expected issues for the evolution of the selfing rate consequently differ depending on the dominance coefficients. In some cases, expectations for the evolution of the selfing rate resemble expectations in diploids; but particular sets of dominance coefficients can be found that lead to either complete selfing or intermediate selfing rates as unique evolutionary stable state.


2019 ◽  
Author(s):  
Benjamin Galeota-Sprung ◽  
Breanna Guindon ◽  
Paul Sniegowski

AbstractMutational load is the depression in a population’s mean fitness that results from the continual influx of deleterious mutations. Here, we directly estimate the mutational load in a population of haploid Saccharomyces cerevisiae that are deficient for mismatch repair. We partition the load in haploids into two components. To estimate the load due to nonlethal mutations, we measure the competitive fitness of hundreds of randomly selected clones from both mismatch repair-deficient and - proficient populations. Computation of the mean clone fitness for the mismatch repair-deficient strain permits an estimation of the nonlethal load, and the histogram of fitness provides an interesting visualization of a loaded population. In a separate experiment, in order to estimate the load due to lethal mutations (i.e. the lethal mutation rate), we manipulate thousands of individual pairs of mother and daughter cells and track their fates. These two approaches yield point estimates for the two contributors to load, and the addition of these estimates is nearly equal to the separately measured short-term competitive fitness deficit for the mismatch repair-deficient strain. This correspondence suggests that there is no need to invoke direct fitness effects to explain the fitness difference between mismatch repair-deficient and - proficient strains. Assays in diploids are consistent with deleterious mutations in diploids tending towards recessivity. These results enhance our understanding of mutational load, a central population genetics concept, and we discuss their implications for the evolution of mutation rates.


Genetics ◽  
1995 ◽  
Vol 139 (3) ◽  
pp. 1441-1447 ◽  
Author(s):  
H A Orr

Abstract Explanation of diploidy have focused on advantages gained from masking deleterious mutations that are inherited. Recent theory has shown that these explanations are flawed. Indeed, we still lack any satisfactory explanation of diploidy in species that are asexual or that recombine only rarely. Here I consider a possibility first suggested by Efroimson in 1932, by Muller in 1964 and by Crow and Kimura in 1965: diploidy may provide protection against somatic, not inherited, mutations. I both compare the mean fitness of haploid and diploid populations that are asexual and investigate the invasion of "diploidy" alleles in sexual populations. When deleterious mutations are partially recessive and somatic mutation is sufficiently common, somatic mutation provides a clear advantage to diploidy in both asexual and sexual species.


Genetics ◽  
1996 ◽  
Vol 144 (1) ◽  
pp. 349-360 ◽  
Author(s):  
Hong-Wen Deng ◽  
Michael Lynch

Abstract The rate and average effects of spontaneous deleterious mutations are important determinants of the evolution of breeding systems and of the vulnerability of small populations to extinction. Nevertheless, few attempts have been made to estimate the properties of such mutations, and those studies that have been performed have been extremely labor intensive, relying on long-term, laboratory mutation-accumulation experiments. We present an alternative to the latter approach. For populations in which the genetic variance for fitness is a consequence of selection-mutation balance, the mean fitness and genetic variance of fitness in outbred and inbred generations can be expressed as simple functions of the genomic mutation rate, average homozygous effect and average dominance coefficient of new mutations. Using empirical estimates for the mean and genetic variance of fitness, these expressions can then be solved to obtain joint estimates of the deleterious-mutation parameters. We employ computer simulations to evaluate the degree of bias of the estimators and present some general recommendations on the application of the technique. Our procedures provide some hope for obtaining estimates of the properties of deleterious mutations from a wide phylogenetic range of species as well as a mechanism for testing the validity of alternative models for the maintenance of genetic variance for fitness.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jacob Pieter Rutten ◽  
Paulien Hogeweg ◽  
Guillaume Beslon

Abstract Background Mutators are common in bacterial populations, both in natural isolates and in the lab. The fate of these lineages, which mutation rate is increased up to 100 ×, has long been studied using population genetics models, showing that they can spread in a population following an environmental change. However in stable conditions, they suffer from the increased mutational load, hence being overcome by non-mutators. However, these results don’t take into account the fact that an elevated mutation rate can impact the genetic structure, hence changing the sensitivity of the population to mutations. Here we used Aevol, an in silico experimental evolution platform in which genomic structures are free to evolve, in order to study the fate of mutator populations evolving for a long time in constant conditions. Results Starting from wild-types that were pre-evolved for 300,000 generations, we let 100 mutator populations (point mutation rate ×100) evolve for 100,000 further generations in constant conditions. As expected all populations initially undergo a fitness loss. However, after that the mutator populations started to recover. Most populations ultimately recovered their ancestors fitness, and a significant fraction became even fitter than the non-mutator control clones that evolved in parallel. By analyzing the genomes of the mutators, we show that the fitness recovery is due to two mechanisms: i. an increase in robustness through compaction of the coding part of the mutator genomes, ii. an increase of the selection coefficient that decreases the mean-fitness of the population. Strikingly the latter is due to the accumulation of non-coding sequences in the mutators genomes. Conclusion Our results show that the mutational burden that is classically thought to be associated with mutator phenotype is escapable. On the long run mutators adapted their genomes and reshaped the distribution of mutation effects. Therewith the lineage is able to recover fitness even though the population still suffers the elevated mutation rate. Overall these results change our view of mutator dynamics: by being able to reduce the deleterious effect of the elevated mutation rate, mutator populations may be able to last for a very long time; A situation commonly observed in nature.


Genetics ◽  
1999 ◽  
Vol 153 (1) ◽  
pp. 497-506 ◽  
Author(s):  
Rasmus Nielsen ◽  
Daniel M Weinreich

Abstract McDonald/Kreitman tests performed on animal mtDNA consistently reveal significant deviations from strict neutrality in the direction of an excess number of polymorphic nonsynonymous sites, which is consistent with purifying selection acting on nonsynonymous sites. We show that under models of recurrent neutral and deleterious mutations, the mean age of segregating neutral mutations is greater than the mean age of segregating selected mutations, even in the absence of recombination. We develop a test of the hypothesis that the mean age of segregating synonymous mutations equals the mean age of segregating nonsynonymous mutations in a sample of DNA sequences. The power of this age-of-mutation test and the power of the McDonald/Kreitman test are explored by computer simulations. We apply the new test to 25 previously published mitochondrial data sets and find weak evidence for selection against nonsynonymous mutations.


Genetics ◽  
1974 ◽  
Vol 77 (3) ◽  
pp. 569-589
Author(s):  
Martin L Tracey ◽  
Francisco J Ayala

ABSTRACT Recent studies of genetically controlled enzyme variation lead to an estimation that at least 30 to 60% of the structural genes are polymorphic in natural populations of many vertebrate and invertebrate species. Some authors have argued that a substantial proportion of these polymorphisms cannot be maintained by natural selection because this would result in an unbearable genetic load. If many polymorphisms are maintained by heterotic natural selection, individuals with much greater than average proportion of homozygous loci should have very low fitness. We have measured in Drosophila melanogaster the fitness of flies homozygous for a complete chromosome relative to normal wild flies. A total of 37 chromosomes from a natural population have been tested using 92 experimental populations. The mean fitness of homozygous flies is 0.12 for second chromosomes, and 0.13 for third chromosomes. These estimates are compatible with the hypothesis that many (more than one thousand) loci are maintained by heterotic selection in natural populations of D. melanogaster.


Sign in / Sign up

Export Citation Format

Share Document