scholarly journals A MUTATION ALLOWING EXPRESSION OF NORMALLY SILENT a MATING-TYPE INFORMATION IN SACCHAROMYCES CEREVISIAE

Genetics ◽  
1983 ◽  
Vol 104 (2) ◽  
pp. 219-234
Author(s):  
Harry Gruenspan ◽  
Norman R Eaton

ABSTRACT Mating type in haploid cells of the yeast Saccharomyces cerevisiae is determined by a pair of alleles MAT  a and MATα. Under various conditions haploid mating types can be interconverted. It has been proposed that transpositions of silent cassettes of mating-type information from HML or HMR to MAT are the source of mating type conversions. A mutation described in this work, designated AON1, has the following properties. (1) MATα cells carring AON1 are defective in mating. (2) AON1 allows MATα/MATα but not MAT  a/MAT  a diploids to sporulate; thus, AON1 mimics the MAT  a requirement for sporulation. (3) mat  a-1 cells that carry AON1 are MAT  a phenocopies, i.e., MATα/mat  a-1 AON1 diploids behave as standard MATα/MAT  a cells; therefore, AON1 suppresses the defect of mat  a-1. (4) AON1 maps at or near HMR  a. (5) Same-site revertants from AON1 lose the ability to convert mating type to MAT  a, indicating that reversion is associated with the loss of a functional HMR  a locus. In addition, AON1 is a dominant mutation. We conclude that AON1 is a regulatory mutation, probably cis-acting, that leads to the constitutive expression of silent a mating-type information located at HMR  a.

Genetics ◽  
1977 ◽  
Vol 85 (3) ◽  
pp. 373A-393
Author(s):  
James B Hicks ◽  
Ira Herskowitz

ABSTRACT The two mating types of the yeast Saccharomyces cerevisiae can be interconverted in both homothallic and heterothallic strains. Previous work indicates that all yeast cells contain the information to be both a and α and that the HO gene (in homothallic strains) promotes a change in mating type by causing a change at the mating type locus itself. In both heterothallic and homothallic strains, a defective α mating type locus can be converted to a functional a locus and subsequently to a functional α locus. In contrast, action of the HO gene does not restore mating ability to a strain defective in another gene for mating which is not at the mating type locus. These observations indicate that a yeast cell contains an additional copy (or copies) of α information, and lead to the "cassette" model for mating type interconversion. In this model, HM  a and hmα loci are blocs of unexpressed α regulatory information, and HMα and hm  a loci are blocs of unexpressed a regulatory information. These blocs are silent because they lack an essential site for expression, and become active upon insertion of this information (or a copy of the information) into the mating type locus by action of the HO gene.


Genetics ◽  
1993 ◽  
Vol 135 (3) ◽  
pp. 711-718 ◽  
Author(s):  
R L Keil ◽  
A D McWilliams

Abstract The preservation of sequence homogeneity and copy number of tandemly repeated genes may require specific mechanisms or regulation of recombination. We have identified mutations that specifically affect recombination among natural repetitions in the yeast Saccharomyces cerevisiae. The rrm3 mutation stimulates mitotic recombination in the naturally occurring tandem repeats of the rDNA and copper chelatin (CUP1) genes. This mutation does not affect recombination of several other types of repeated genes tested including Ty elements, mating type information and duplications created by transformation. In addition to stimulating exchange among the multiple CUP1 repeats at their natural chromosomal location, rrm3 also increases recombination of a duplication of CUP1 units present at his4. This suggests that the RRM3 gene may encode a sequence-specific factor that contributes to a global suppression of mitotic exchange in sequences that can be maintained as tandem arrays.


Genetics ◽  
1979 ◽  
Vol 93 (4) ◽  
pp. 877-901 ◽  
Author(s):  
Jasper Rine ◽  
Jeffrey N Strathern ◽  
James B Hicks ◽  
Ira Herskowitz

ABSTRACT A mutation has been identified that suppresses the mating and sporulation defects of all mutations in the mating-type loci of S. cereuisiae. This suppressor, sir1-1, restores mating ability to matαl and matα2 mutants and restores sporulation ability to matα2 and mata1 mutants. MATa sir1-1 strains exhibit a polar budding pattern and have reduced sensitivity to α-factor, both properties of a/α diploids. Furthermore, sir1-1 allows MATa/MATa, matα1/matα1, and MATα/MATα strains to sporulate efficiently. All actions of sir1-1 are recessive to SIR1. The ability of sir1-1 to supply all functions necessary for mating and sporulation and its effects in a cells are explained by proposing that sir1-1 allows expression of mating type loci which are ordinarily not expressed. The ability of sir1-1 to suppress the matαl-5 mutation is dependent on the HMa gene, previously identified as required for switching of mating types from a to α. Thus, as predicted by the cassette model, HMa is functionally equivalent to MATα since it supplies functions of MATα. We propose that sir1-1 is defective in a function, Sir ("Silent-information regulator"), whose role may be to regulate expression of HMa and HMα.


Genetics ◽  
1980 ◽  
Vol 94 (2) ◽  
pp. 341-360
Author(s):  
Deborah Wygal Mascioli ◽  
James E Haber

ABSTRACT Homothallic strains of Saccharomyces cerevisiae are able to switch from one mating-type to the other as frequently as every cell division. We have identified a cis-dominant mutation of the MATa locus, designated MATa-inc, that can be converted to MATα at only about 5% of the normal efficiency. In homothallic MATa-inc/mata* diploids, the MATa-inc locus switched to MATα in only one of 30 cases, while the mata* locus switched to MATα in all 30 cases. The MATa-inc mutation can be "healed" by a series of switches, first to MATα and then to a normal allele of MATa. These data are consistent with the "cassette" model of HICKS, STRATHERN and HERSKOWITZ (1977), in which mating conversions involve the transposition of wild-type copies of a or α information from silent genes elsewhere in the genome. The MATa-inc mutation appears to alter a DNA sequence necessary for the replacement of MATa by MATα. The MATa-inc mutation has no other effect on MATa functions. In heterothallic backgrounds, the mutation has no effect on the sensitivity to α-factor, synthesis of a-factor, expression of barrier phenotype or ability to mate or sporulate.—The MATa-inc allele does, however, exhibit one pleiotropic effect. About 1% of homothallic MATa-inc cells become completely unable to switch mating type because ofmutations at HMa, the locus proposed to carry the silent copy of α information.—In addition, we have isolated a less efficient allele of the HO gene.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1223
Author(s):  
Randi Yeager ◽  
G. Guy Bushkin ◽  
Emily Singer ◽  
Rui Fu ◽  
Benjamin Cooperman ◽  
...  

Gametogenesis in diploid cells of the budding yeast Saccharomyces cerevisiae produces four haploid meiotic products called spores. Spores are dormant until nutrients trigger germination, when they bud asexually or mate to return to the diploid state. Each sporulating diploid produces a mix of spores of two haploid mating types, a and α. In asexually dividing haploids, the mating types result from distinct, mutually exclusive gene expression programs responsible for production of mating pheromones and the receptors to sense them, all of which are silent in diploids. It was assumed that spores only transcribe haploid- and mating-type-specific genes upon germination. We find that dormant spores of each mating type harbor transcripts representing all these genes, with the exception of Mata1, which we found to be enriched in a spores. Mata1 transcripts, from a rare yeast gene with two introns, were mostly unspliced. If the retained introns reflect tethering to the MATa locus, this could provide a mechanism for biased inheritance. Translation of pheromones and receptors were repressed at least until germination. We find antisense transcripts to many mating genes that may be responsible. These findings add to the growing number of examples of post-transcriptional regulation of gene expression during gametogenesis.


Genetics ◽  
1985 ◽  
Vol 111 (4) ◽  
pp. 735-744
Author(s):  
John M Ivy ◽  
James B Hicks ◽  
Amar J S Klar

ABSTRACT The HML and HMR loci in the yeast Saccharomyces cerevisiae each contain a complete copy of mating-type information. HML and HMR normally are transcriptionally inactive due to four unlinked genes, known as MAR or SIR or CMT. The map position of MAR1 (SIR2) has been reported previously; it is located on the left arm of chromosome IV, 27 cM from the centromere. Using conventional meiotic and mitotic mapping combined with recombinant DNA techniques, we have mapped three other SIR genes. SIR1 maps near the telomere of the right arm of chromosome XI; SIR3 (MAR2) maps to the right arm of chromosome XII, 31 cM distal to URA4; and SIR4 maps to the right arm of chromosome IV, 16 cM proximal to LYS4.


1979 ◽  
Vol 80 (2) ◽  
pp. 326-333 ◽  
Author(s):  
J S Tkacz ◽  
V L MacKay

In the yeast Saccharomyces cerevisiae, sexual conjugation between haploid cells of opposite mating type results in the formation of a diploid zygote. When treated with fluorescently labeled concanavalin A, a zygote stains nonuniformly, with the greatest fluorescence occurring at the conjugation bridge between the two haploid parents. In the mating mixture, unconjugated haploid cells often elongate to pear-shaped forms ("shmoos") which likewise exhibit asymmetric staining with the most intense fluorescence at the growing end. Shmoo formation can be induced in cells of one mating type by the addition of a hormone secreted by cells of the opposite mating type; such shmoos also stain asymmetrically. In nearly all cases, the nonmating mutants that were examined stained uniformly after incubation with the appropriate hormone. Asymmetric staining is not observed with vegetative cells, even those that are budded. These results suggest that, before and during conjugation, localized cell surface changes occur in cells of both mating types; the surface alterations facilitate fusion and are apparently mediated by the hormones in a manner that is mating-type specific.


1986 ◽  
Vol 6 (2) ◽  
pp. 688-702 ◽  
Author(s):  
J M Ivy ◽  
A J Klar ◽  
J B Hicks

Mating type in the yeast Saccharomyces cerevisiae is determined by the MAT (a or alpha) locus. HML and HMR, which usually contain copies of alpha and a mating type information, respectively, serve as donors in mating type interconversion and are under negative transcriptional control. Four trans-acting SIR (silent information regulator) loci are required for repression of transcription. A defect in any SIR gene results in expression of both HML and HMR. The four SIR genes were isolated from a genomic library by complementation of sir mutations in vivo. DNA blot analysis suggests that the four SIR genes share no sequence homology. RNA blots indicate that SIR2, SIR3, and SIR4 each encode one transcript and that SIR1 encodes two transcripts. Null mutations, made by replacement of the normal genomic allele with deletion-insertion mutations created in the cloned SIR genes, have a Sir- phenotype and are viable. Using the cloned genes, we showed that SIR3 at a high copy number is able to suppress mutations of SIR4. RNA blot analysis suggests that this suppression is not due to transcriptional regulation of SIR3 by SIR4; nor does any SIR4 gene transcriptionally regulate another SIR gene. Interestingly, a truncated SIR4 gene disrupts regulation of the silent mating type loci. We propose that interaction of at least the SIR3 and SIR4 gene products is involved in regulation of the silent mating type genes.


1981 ◽  
Vol 1 (10) ◽  
pp. 958-960 ◽  
Author(s):  
J Rine ◽  
G F Sprague ◽  
I Herskowitz

Sporulation in Saccharomyces cerevisiae normally occurs only in MATa/MAT alpha diploids. We show that mutations in RME1 bypassed the requirements for both a and alpha mating type information in sporulation and therefore allowed MATa/MATa and MAT alpha/MAT alpha diploids to sporulate. RME1 was located on chromosome VII, between LEU1 and ADE6.


Sign in / Sign up

Export Citation Format

Share Document