scholarly journals ALTERED FIDELITY OF MITOTIC CHROMOSOME TRANSMISSION IN CELL CYCLE MUTANTS OF S. CEREVISIAE

Genetics ◽  
1985 ◽  
Vol 110 (3) ◽  
pp. 381-395
Author(s):  
Leland H Hartwell ◽  
David Smith

ABSTRACT Thirteen of 14 temperature-sensitive mutants deficient in successive steps of mitotic chromosome transmission (cdc2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17 and 20) from spindle pole body separation to a late stage of nuclear division exhibited a dramatic increase in the frequency of chromosome loss and/or mitotic recombination when they were grown at their maximum permissive temperatures. The increase in chromosome loss and/or recombination is likely to be due to the deficiency of functional gene product rather than to an aberrant function of the mutant gene product since the mutant alleles are, with one exception, recessive to the wild-type allele for this phenotype. The generality of this result suggests that a delay in almost any stage of chromosome replication or segregation leads to a decrease in the fidelity of mitotic chromosome transmission. In contrast, temperature-sensitive mutants defective in the control step of the cell cycle (cdc28), in cytokinesis (cdc3) or in protein synthesis (ils1) did not exhibit increased recombination or chromosome loss.—Based upon previous results with mutants and DNA-damaging agents in a variety of organisms, we suggest that the induction of mitotic recombination in certain mutants is due to the action of a repair pathway upon nicks or gaps left in the DNA. This interpretation is supported by the fact that the induced recombination is dependent upon the RAD52 gene product, an essential component in the recombinogenic DNA repair pathway. Gene products whose deficiency leads to induced recombination are, therefore, strong candidates for proteins that function in DNA metabolism. Among the mutants that induce recombination are those known to be defective in some aspect of DNA replication (cdc2, 6, 8, 9) as well as some mutants defective in the G2 (cdc13 and 17) and M (cdc5 and 14) phases of the mitotic cycle. We suggest that special aspects of DNA metabolism may be occurring in G2 and M in order to prepare the chromosomes for proper segregation.

1996 ◽  
Vol 16 (3) ◽  
pp. 1017-1026 ◽  
Author(s):  
M M Smith ◽  
P Yang ◽  
M S Santisteban ◽  
P W Boone ◽  
A T Goldstein ◽  
...  

The histone proteins are essential for the assembly and function of th e eukaryotic chromosome. Here we report the first isolation of a temperature-sensitive lethal histone H4 mutant defective in mitotic chromosome transmission Saccharomyces cerevisiae. The mutant requires two amino acid substitutions in histone H4: a lethal Thr-to-Ile change at position 82, which lies within one of the DNA-binding surfaces of the protein, and a substitution of Ala to Val at position 89 that is an intragenic suppressor. Genetic and biochemical evidence shows that the mutant histone H4 is temperature sensitive for function but not for synthesis, deposition, or stability. The chromatin structure of 2 micrometer circle minichromosomes is temperature sensitive in vivo, consistent with a defect in H4-DNA interactions. The mutant also has defects in transcription, displaying weak Spt- phenotypes. At the restrictive temperature, mutant cells arrest in the cell cycle at nuclear division, with a large bud, a single nucleus with 2C DNA content, and a short bipolar spindle. At semipermissive temperatures, the frequency of chromosome loss is elevated 60-fold in the mutant while DNA recombination frequencies are unaffected. High-copy CSE4, encoding an H3 variant related to the mammalian CENP-A kinetochore antigen, was found to suppress the temperature sensitivity of the mutant without suppressing the Spt- transcription defect. These genetic, biochemical, and phenotypic results indicate that this novel histone H4 mutant defines one or more chromatin-dependent steps in chromosome segregation.


1993 ◽  
Vol 123 (2) ◽  
pp. 387-403 ◽  
Author(s):  
M T Brown ◽  
L Goetsch ◽  
L H Hartwell

The function of the essential MIF2 gene in the Saccharomyces cerevisiae cell cycle was examined by overepressing or creating a deficit of MIF2 gene product. When MIF2 was overexpressed, chromosomes missegregated during mitosis and cells accumulated in the G2 and M phases of the cell cycle. Temperature sensitive mutants isolated by in vitro mutagenesis delayed cell cycle progression when grown at the restrictive temperature, accumulated as large budded cells that had completed DNA replication but not chromosome segregation, and lost viability as they passed through mitosis. Mutant cells also showed increased levels of mitotic chromosome loss, supersensitivity to the microtubule destabilizing drug MBC, and morphologically aberrant spindles. mif2 mutant spindles arrested development immediately before anaphase spindle elongation, and then frequently broke apart into two disconnected short half spindles with misoriented spindle pole bodies. These findings indicate that MIF2 is required for structural integrity of the spindle during anaphase spindle elongation. The deduced Mif2 protein sequence shared no extensive homologies with previously identified proteins but did contain a short region of homology to a motif involved in binding AT rich DNA by the Drosophila D1 and mammalian HMGI chromosomal proteins.


1989 ◽  
Vol 141 (1) ◽  
pp. 90-96 ◽  
Author(s):  
Hansjuerg Alder ◽  
Chung-Der Chang ◽  
Sing-Tsung Chen ◽  
Ingrid Beck ◽  
Chen-Yeh Chang ◽  
...  

1980 ◽  
Vol 44 (0) ◽  
pp. 1007-1012 ◽  
Author(s):  
R. R. Friis ◽  
B. M. Jockusch ◽  
C. B. Boschek ◽  
A. Ziemiecki ◽  
H. Rubsamen ◽  
...  

1989 ◽  
Vol 53 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Donald J. Komma ◽  
Heath Graves ◽  
Sharyn A. Endow

SummaryTwo mutant alleles of the meiotic locus, mei-9, have been examined for their effect on magnification of a rod Xbb chromosome and transmission of a ring Xbb chromosome under magnifying conditions. Our results indicate that the effects of these two mutations are allele-specific: mei-9a strongly inhibits both rod chromosome magnification and ring chromosome loss under magnifying conditions, while mei-9b has a smaller inhibitory effect on rod chromosome magnification and on the transmission of ring chromosomes under magnifying conditions. These observations can be explained by a difference in leakiness between the two alleles. Our results demonstrate that mutants defective in excision repair and repair replication inhibit ribosomal gene magnification. This suggests that a component of the excision repair pathway is involved in the process of magnification.


Genetics ◽  
1977 ◽  
Vol 85 (4) ◽  
pp. 573-585
Author(s):  
D A Campbell ◽  
S Fogel

ABSTRACT Experiments designed to characterize the association between disomic chromosome loss and centromere-adjacent mitotic recombination were performed. Mitotic gene convertants were selected at two heteroallelic sites on the left arm of disomic chromosome III and tested for coincident chromosome loss. The principal results are: (1) Disomic chromosome loss is markedly enhanced (nearly 40-fold) over basal levels among mitotic gene convertants selected to arise close to the centromere; no such enhancement is observed among convertants selected to arise relatively far from the centromere. (2) Chromosome loss is primarily associated with proximal allele conversion at the centromere-adjacent site, and many of these convertants are reciprocally recombined in the adjacent proximal interval. (3) Partial aneuploid exceptions provisionally identified as carrying left arm telocentrics have been found. A testable model is proposed suggesting that centromere involvement in genetic recombination may precipitate segregational disfunction leading to mitotic chromosome loss.


Sign in / Sign up

Export Citation Format

Share Document