scholarly journals GENETIC ANALYSIS OF MUTANTS WITH A REDUCED Ca2+-DEPENDENT K+ CURRENT IN PARAMECIUM TETRAURELIA

Genetics ◽  
1985 ◽  
Vol 111 (3) ◽  
pp. 433-445
Author(s):  
Robert D Hinrichsen ◽  
Ed Amberger ◽  
Yoshiro Saimi ◽  
Anthony Burgess-Cassler ◽  
Ching Kung

ABSTRACT Two mutants of Paramecium tetraurelia with greatly reduced Ca2+-dependent K+ currents have been isolated and genetically analyzed. These mutants, designated pantophobiac, give much stronger behavioral responses to all stimuli than do wild-type cells. Under voltage clamp, the Ca2+-dependent K+ current is almost completely eliminated in these mutants, whereas the Ca2+ current is normal. The two mutants, pntA and pntB, are recessive and unlinked to each other. pntA is not allelic to several other ion-channel mutants of P. tetraurelia. The microinjection of a high-speed supernatant fraction of wild-type cytoplasm into either pantophobiac mutant caused a temporary restoration to the wild-type phenotype.

Genetics ◽  
1984 ◽  
Vol 108 (3) ◽  
pp. 545-558
Author(s):  
Robert D Hinrichsen ◽  
Yoshiro Saimi ◽  
Ching Kung

ABSTRACT Dancers are a group of mutants in Paramecium tetraurelia whose Ca2+ current inactivates poorly and are likely to be defective in the structure of their Ca2+ channels. These mutants show prolonged backward swimming in response to K+ and Ba2+ in the medium and were selected by this property in a galvanotactic trough. The dancer mutants are semidominant, and all isolated mutants belong to one complementation group; they are not allelic to any of the previously isolated behavioral mutants of P. tetraurelia. The phenotypic change from the homozygous parent to heterozygous F1 generation takes three to five fissions. There is no evidence of a cytoplasmic factor capable of converting the dancer to the wild-type phenotype, as has been demonstrated in the mutants pawn and cnr. We suggest that the dancer locus is a structural gene for the Ca2+ channel.


Genetics ◽  
1991 ◽  
Vol 129 (3) ◽  
pp. 717-725
Author(s):  
R D Hinrichsen ◽  
M Pollock ◽  
T Hennessey ◽  
C Russell

Abstract We describe a suppressor of the calmodulin mutant cam1 in Paramecium tetraurelia. The cam1 mutant, which has a SER----PHE change at residue 101 of the third calcium-binding domain, inhibits the activity of the Ca(2+)-dependent K+ current and causes exaggerated behavioral responses to most stimuli. An enrichment scheme, based on an increased sensitivity to Ba2+ in cam1 cells, was used to isolate suppressors. One such suppressor, designated cam101, restores both the activity of the Ca(2+)-dependent K+ current and behavioral responses of the cells. We show that the cam101 mutant is an intragenic suppressor of cam1, based on genetic and microinjection data. The cam101 calmodulin is shown to be similar to wild-type calmodulin in terms of its ability to stimulate calmodulin-dependent phosphodiesterase at low concentrations of free calcium. However, the cam101 calmodulin has a reduced affinity for a monoclonal antibody to wild-type Paramecium calmodulin, as does the parental cam1 calmodulin, and a different mobility on acid-urea gels relative to both wild-type and cam1 calmodulin. We have been able to demonstrate that the isolation of intragenic suppressors of a calmodulin mutation is possible, which allows for the further genetic analysis of structure-function relationships in the calmodulin molecule.


1989 ◽  
Vol 263 (2) ◽  
pp. 355-363 ◽  
Author(s):  
L Shaw ◽  
R Schauer

The finding that N-glycoloylneuraminic acid (Neu5Gc) in pig submandibular gland is synthesized by hydroxylation of the sugar nucleotide CMP-Neu5Ac [Shaw & Schauer (1988) Biol. Chem. Hoppe-Seyler 369, 477-486] prompted us to investigate further the biosynthesis of this sialic acid in mouse liver. Free [14C]Neu5Ac, CMP-[14C]Neu5Ac and [14C]Neu5Ac glycosidically bound by Gal alpha 2-3- and Gal alpha 2-6-GlcNAc beta 1-4 linkages to fetuin were employed as potential substrates in experiments with fractionated mouse liver homogenates. The only substrate to be hydroxylated was the CMP-Neu5Ac glycoside. The product of the reaction was identified by chemical and enzymic methods as CMP-Neu5Gc. All of the CMP-Neu5Ac hydroxylase activity was detected in the high-speed supernatant fraction. The hydroxylase required a reduced nicotinamide nucleotide [NAD(P)H] coenzyme and molecular oxygen for activity. Furthermore, the activity of this enzyme was enhanced by exogenously added Fe2+ or Fe3+ ions, all other metal salts tested having a negligible or inhibitory influence. This hydroxylase is therefore tentatively classified as a monooxygenase. The cofactor requirement and CMP-Neu5Ac substrate specificity are identical to those of the enzyme in high-speed supernatants of pig submandibular gland, suggesting that this is a common route of Neu5Gc biosynthesis. The relevance of these results to the regulation of Neu5Gc expression in sialoglycoconjugates is discussed.


Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 871-880
Author(s):  
Robin R Preston ◽  
Jocelyn A Hammond

Three mutant strains of Paramecium tetraurelia with an enhanced sensitivity to magnesium have been isolated. These new “Chameleon” mutants result from partial- or codominant mutations at a single locus, Cha. Whereas the wild type responded to 5 mm Mg2+ by swimming backward for 10–15 sec, Cha mutants responded with ∼30 sec backward swimming. Electrophysiological analysis suggested that this behavior may be caused by slowing in the rate at which a Mg2+-specific ion conductance deactivates following membrane excitation. This would be consistent with an observed increase in the sensitivity of Cha mutants to nickel poisoning, since Ni2+ is also able to enter the cell via this pathway. More extensive behavioral analysis showed that Cha cells also overresponded to Na+, but there was no evidence for a defect in intracellular Ca2+ homeostasis that might account for a simultaneous enhancement of both the Mg2+ and Na+ conductances. The possibility that the Cha locus may encode a specific regulator of the Mg2+- and Na+-permeabilities is considered.


1963 ◽  
Vol 19 (2) ◽  
pp. 309-316 ◽  
Author(s):  
Diana S. Beattie ◽  
Howard R. Sloan ◽  
R. E. Basford

A mitochondrial fraction prepared from calf brain cortex possessed negligible glycolytic activity in the absence of the enzymes of the high speed supernatant fraction. When mitochondria were added to a supernatant system supplemented with optimal amounts of crystalline hexokinase, a 20 per cent stimulation of glycolysis was observed. The supernatant fraction produced minimal amounts of lactate in the absence of exogenous hexokinase; the addition of mitochondria doubled the lactate production. The substitution of glycolytic intermediates for glucose as substrates as well as the addition of exogenous glycolytic enzymes to the supernatant fraction or supernatant fraction plus mitochondria indicated that the mitochondria contributed mainly hexokinase and phosphofructokinase. By direct assay of all of the enzymes of the glycolytic pathway, only hexokinase and phosphofructokinase were shown to be concentrated in the mitochondrial fraction. All other glycolytic enzymes were found to exhibit higher total and specific activities in the supernatant fraction.


2000 ◽  
Vol 150 (5) ◽  
pp. 1001-1012 ◽  
Author(s):  
Changsong Yang ◽  
Minzhou Huang ◽  
John DeBiasio ◽  
Martin Pring ◽  
Michael Joyce ◽  
...  

We find that profilin contributes in several ways to Cdc42-induced nucleation of actin filaments in high speed supernatant of lysed neutrophils. Depletion of profilin inhibited Cdc42-induced nucleation; re-addition of profilin restored much of the activity. Mutant profilins with a decreased affinity for either actin or poly-l-proline were less effective at restoring activity. Whereas Cdc42 must activate Wiskott-Aldrich Syndrome protein (WASP) to stimulate nucleation by the Arp2/3 complex, VCA (verpolin homology, cofilin, and acidic domain contained in the COOH-terminal fragment of N-WASP) constitutively activates the Arp2/3 complex. Nucleation by VCA was not inhibited by profilin depletion. With purified N-WASP and Arp2/3 complex, Cdc42-induced nucleation did not require profilin but was enhanced by profilin, wild-type profilin being more effective than mutant profilin with reduced affinity for poly-l-proline. Nucleation by the Arp2/3 complex is a function of the free G-actin concentration. Thus, when profilin addition decreased the free G-actin concentration, it inhibited Cdc42- and VCA-induced nucleation. However, when profilin was added with G-actin in a ratio that maintained the initial free G-actin concentration, it increased the rate of both Cdc42- and VCA-induced nucleation. This enhancement, also seen with purified proteins, was greatest when the free G-actin concentration was low. These data suggest that under conditions present in intact cells, profilin enhances nucleation by activated Arp2/3 complex.


2000 ◽  
Vol 76 (2) ◽  
pp. 125-133 ◽  
Author(s):  
ATSUSHI MATSUDA ◽  
YOSHIRO SAIMI ◽  
MIHOKO TAKAHASHI

A non-excitable behavioural mutant, d4-662, was previously characterized as the fourth pawn locus mutant pwD in Paramecium tetraurelia. We now provide data demonstrating that d4-662 is in fact controlled by a pwB allele that has the unusual feature of complementing other pwB alleles in heterozygous F1 progeny. Neither the cytoplasm nor the nucleoplasm of d4-662 cured the mutational defects of pwB and in the reverse combination of d4-662 and pwB, the result was the same. On the other hand, pwA, another non-excitable mutant, was cured upon cross-injection with d4-662 and mutants carrying trichocyst non-discharge marker genes were also cured. This evidence suggests that d4-662 is a new mutant belonging to pwB, and would be better designated as pwB662. Extensive crossbreeding analyses, however, showed an unusual genetic relationship between d4-662 and pwB (pwB95 or pwB96). When d4-662 was crossed with pwB mutants, many progeny expressing wild-type phenotype or mixed clones of wild-type and pawn cells were obtained in the F1. Less than 12·5% expressed the pawn phenotype. The appearance of wild-type progeny in this F1 strongly suggests that an inter-allelic interaction between pwB662 and other pwB alleles may occur during development of the macronucleus.


Sign in / Sign up

Export Citation Format

Share Document