scholarly journals Phenotypic and Genetic Analysis of “Chameleon,” a Paramecium Mutant With an Enhanced Sensitivity to Magnesium

Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 871-880
Author(s):  
Robin R Preston ◽  
Jocelyn A Hammond

Three mutant strains of Paramecium tetraurelia with an enhanced sensitivity to magnesium have been isolated. These new “Chameleon” mutants result from partial- or codominant mutations at a single locus, Cha. Whereas the wild type responded to 5 mm Mg2+ by swimming backward for 10–15 sec, Cha mutants responded with ∼30 sec backward swimming. Electrophysiological analysis suggested that this behavior may be caused by slowing in the rate at which a Mg2+-specific ion conductance deactivates following membrane excitation. This would be consistent with an observed increase in the sensitivity of Cha mutants to nickel poisoning, since Ni2+ is also able to enter the cell via this pathway. More extensive behavioral analysis showed that Cha cells also overresponded to Na+, but there was no evidence for a defect in intracellular Ca2+ homeostasis that might account for a simultaneous enhancement of both the Mg2+ and Na+ conductances. The possibility that the Cha locus may encode a specific regulator of the Mg2+- and Na+-permeabilities is considered.

Microbiology ◽  
2004 ◽  
Vol 150 (7) ◽  
pp. 2415-2428 ◽  
Author(s):  
Xiaomin Zhao ◽  
Soon-Hwan Oh ◽  
Georgina Cheng ◽  
Clayton B. Green ◽  
Jennifer A. Nuessen ◽  
...  

The ALS (agglutinin-like sequence) gene family of Candida albicans encodes eight cell-surface glycoproteins, some of which are involved in adherence to host surfaces. A mutational analysis of each ALS gene is currently being performed to deduce the functions of the encoded proteins and to better understand the role of these proteins in C. albicans biology and pathogenesis. This paper describes construction of an als3/als3 mutant and comparison of its phenotype to an als1/als1 strain. Efforts to disrupt ALS3 indicated that the gene could be deleted in two transformation steps, suggesting that the gene is encoded by a single locus and that the ALS3-like locus, ALS8, does not exist. Strains lacking ALS3 or ALS1 did not exhibit a defect in germ tube formation when grown in RPMI 1640 medium, but the als1/als1 mutant formed significantly fewer germ tubes in Lee medium. Analysis of ALS3 and ALS1 promoter activity using green fluorescent protein (GFP) reporter strains and flow cytometry showed that when cells are placed into medium that promotes germ tube formation, ALS1 is transcribed prior to ALS3. Comparison of the mutant strains in adhesion assays showed that the als3/als3 strain was defective in adhesion to both human umbilical vein endothelial cells (HUVEC) and buccal epithelial cells (BEC), but not to fibronectin-coated plastic plates. In contrast, the als1/als1 strain showed decreased adherence to HUVEC, but adherence to BEC and fibronectin were the same as wild-type controls. Inoculation of the buccal reconstituted human epithelium (RHE) model of oral candidiasis with the mutant strains showed nearly a total lack of adhesion and epithelial destruction by the als3/als3 mutant while the als1/als1 strain showed only a slightly reduced degree of epithelial destruction compared to the wild-type control. Adhesion data presented here suggest that, in the assays performed, loss of Als3p affects C. albicans adhesion more than loss of Als1p. Collectively, these results demonstrate functional similarities and differences between Als1p and Als3p, and suggest the potential for more complex interrelationships between the ALS genes and their encoded proteins.


Genetics ◽  
1984 ◽  
Vol 108 (3) ◽  
pp. 545-558
Author(s):  
Robert D Hinrichsen ◽  
Yoshiro Saimi ◽  
Ching Kung

ABSTRACT Dancers are a group of mutants in Paramecium tetraurelia whose Ca2+ current inactivates poorly and are likely to be defective in the structure of their Ca2+ channels. These mutants show prolonged backward swimming in response to K+ and Ba2+ in the medium and were selected by this property in a galvanotactic trough. The dancer mutants are semidominant, and all isolated mutants belong to one complementation group; they are not allelic to any of the previously isolated behavioral mutants of P. tetraurelia. The phenotypic change from the homozygous parent to heterozygous F1 generation takes three to five fissions. There is no evidence of a cytoplasmic factor capable of converting the dancer to the wild-type phenotype, as has been demonstrated in the mutants pawn and cnr. We suggest that the dancer locus is a structural gene for the Ca2+ channel.


Genetics ◽  
1977 ◽  
Vol 86 (1) ◽  
pp. 113-120
Author(s):  
Judith Van Houten ◽  
Sheng-Yung Chang ◽  
Ching Kung

ABSTRACT Six mutants of Paramecium tetraurelia with curious "Paranoiac" phenotypes have been isolated and examined. Instead of the normal transient avoiding reactions in Na+ solutions, these mutants show "violent avoidances"—backing continuously for 10 to over 60 sec. This behavior corresponds to prolonged membrane excitation.—Genetic analyses establish five genic loci at which mutations give the "Paranoiac" phenotype. Close linkage between two of these genes occurs. Allelic variants are found for two of the genes. In one case, the two alleles determine very different behavioral phenotypes ("Paranoiac" and "fast-2"). These results show that the mechanism(s) which shuts off excitation in the wild-type membrane is (are) complex, but in the future may be fruitfully pursued in mutants which are defective.


1983 ◽  
Vol 97 (2) ◽  
pp. 378-382 ◽  
Author(s):  
N Haga ◽  
Y Saimi ◽  
M Takahashi ◽  
C Kung

Membrane excitation was the basis for backward swimming of Paramecium facing stimulus. According to standard genetic tests, inexcitable mutants fell into three complementation groups for both Paramecium tetraurelia (pwA, pwB, and pwC) and Paramecium caudatum (cnrA, cnrB, and cnrC). Cytoplasm from a wild type transferred to a mutant through microinjection restored the excitability. Transfusions between genetically defined complementation groups of the same species effected curing, whereas transfusions between different mutants (alleles) of the same group or between sister cells of the same mutant clone did not. Cytoplasmic transfers of all combinations among the six groups of mutants of the two species showed that any cytoplasm, except those from the same group, was able to cure. Since the pawns and the caudatum nonreversals complement one another through transfusion, they appeared to belong to six different complementation groups. The extent of curing, the amount of transfer needed to cure, and the time course of curing were characteristic of the group that received the transfusion. Variations in these parameters further suggested that the six groups represented six different genes. Because the donor cytoplasms from either species were equally effective quantitatively in curing a given mutant, the curing factors were not species specific. These factors are discussed.


2001 ◽  
Vol 69 (11) ◽  
pp. 6725-6730 ◽  
Author(s):  
Douglas M. Heithoff ◽  
Elena Y. Enioutina ◽  
Raymond A. Daynes ◽  
Robert L. Sinsheimer ◽  
David A. Low ◽  
...  

ABSTRACT Salmonella isolates that lack or overproduce DNA adenine methylase (Dam) elicited a cross-protective immune response to different Salmonella serovars. The protection afforded by the Salmonella enterica serovar Typhimurium Dam vaccine was greater than that elicited in mice that survived a virulent infection. S. enterica serovar Typhimurium Dam mutant strains exhibited enhanced sensitivity to mediators of innate immunity such as antimicrobial peptides, bile salts, and hydrogen peroxide. Also, S. enterica serovar Typhimurium Dam− vaccines were not immunosuppressive; unlike wild-type vaccines, they failed to induce increased nitric oxide levels and permitted a subsequent robust humoral response to diptheria toxoid antigen in infected mice. Dam mutant strains exhibited a low-grade persistence which, coupled with the nonimmunosuppression and the ectopic protein expression caused by altered levels of Dam, may provide an expanded source of potential antigens in vaccinated hosts.


Genetics ◽  
1985 ◽  
Vol 111 (3) ◽  
pp. 433-445
Author(s):  
Robert D Hinrichsen ◽  
Ed Amberger ◽  
Yoshiro Saimi ◽  
Anthony Burgess-Cassler ◽  
Ching Kung

ABSTRACT Two mutants of Paramecium tetraurelia with greatly reduced Ca2+-dependent K+ currents have been isolated and genetically analyzed. These mutants, designated pantophobiac, give much stronger behavioral responses to all stimuli than do wild-type cells. Under voltage clamp, the Ca2+-dependent K+ current is almost completely eliminated in these mutants, whereas the Ca2+ current is normal. The two mutants, pntA and pntB, are recessive and unlinked to each other. pntA is not allelic to several other ion-channel mutants of P. tetraurelia. The microinjection of a high-speed supernatant fraction of wild-type cytoplasm into either pantophobiac mutant caused a temporary restoration to the wild-type phenotype.


Genetics ◽  
1977 ◽  
Vol 87 (4) ◽  
pp. 633-653
Author(s):  
Yves Brygoo

ABSTRACT Whereas each of the two complementary mating types, O and E, of Paramecium tetraulrelia normally shows cytoplasmic inheritance, an abnormal heredity of mating type was observed in the progeny of crosses between two stocks of different geographical origin of Paramecium tetraurelia(stock 51 and stock 32). The modified pattern of mating-type inheritance was shown to result from the interaction of the two wild-type alleles at the locus mtD (mtD51 and mtD32), leading to a new differentiated state O*, different from the normal O and E states observed in both stock 51 and stock 32 cells. The genetic analysis of O* clones showed that the O* phenotype involves both a new heritable cytoplasmic state and possibly a nuclear change which can be transmitted through conjugation and segregates in a Mendelian fashion. All the data can be interpreted if the assumption is made that mating-type determination is achieved only by the commitment or noncommitment to the expression of mating-type E, and that this commitment may simply reflect the activation or nonactivation of the locus mtD, under the influence of one or two "cytoplasmic factors" including the product of the gene mtD itself.


1989 ◽  
Vol 9 (4) ◽  
pp. 1507-1512 ◽  
Author(s):  
H Zhu ◽  
H Conrad-Webb ◽  
X S Liao ◽  
P S Perlman ◽  
R A Butow

All mRNAs of yeast mitochondria are processed at their 3' ends within a conserved dodecamer sequence, 5'-AAUAAUAUUCUU-3'. A dominant nuclear suppressor, SUV3-I, was previously isolated because it suppresses a dodecamer deletion at the 3' end of the var1 gene. We have tested the effects of SUV3-1 on a mutant containing two adjacent transversions within a dodecamer at the 3' end of fit1, a gene located within the 1,143-base-pair intron of the 21S rRNA gene, whose product is a site-specific endonuclease required in crosses for the quantitative transmission of that intron to 21S alleles that lack it. The fit1 dodecamer mutations blocked both intron transmission and dodecamer cleavage, neither of which was suppressed by SUV3-1 when present in heterozygous or homozygous configurations. Unexpectedly, we found that SUV3-1 completely blocked cleavage of the wild-type fit1 dodecamer and, in SUV3-1 homozygous crosses, intron conversion. In addition, SUV3-1 resulted in at least a 40-fold increase in the amount of excised intron accumulated. Genetic analysis showed that these phenotypes resulted from the same mutation. We conclude that cleavage of a wild-type dodecamer sequence at the 3' end of the fit1 gene is essential for fit1 expression.


Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1339-1347
Author(s):  
Alfred M Handler ◽  
Sheilachu P Gomez

Abstract Function of the Drosophila melanogaster hobo transposon in tephritid species was tested in transient embryonic excision assays. Wild-type and mutant strains of Anastrepha suspensa, Bactrocera dorsalis, B. cucurbitae, Ceratitis capitata, and Toxotrypana curvicauda all supported hobo excision or deletion both in the presence and absence of co-injected hobo transposase, indicating a permissive state for hobo mobility and the existence of endogenous systems capable of mobilizing hobo. In several strains hobo helper reduced excision. Excision depended on hobo sequences in the indicator plasmid, though almost all excisions were imprecise and the mobilizing systems appear mechanistically different from hobo. hobe-related sequences were identified in all species except T. curvicauda. Parsimony analysis yielded a subgroup including the B. cucurbitae and C. capitata sequences along with hobo and Hermes, and a separate, more divergent subgroup including the A. suspensa and B. dorsalis sequences. All of the sequences exist as multiple genomic elements, and a deleted form of the B. cucurbitae element exists in B. dorsalis. The hobo-related sequences are probably members of the hAT transposon family with some evolving from distant ancestor elements, while others may have originated from more recent horizontal transfers.


Sign in / Sign up

Export Citation Format

Share Document