actin concentration
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 2)

H-INDEX

18
(FIVE YEARS 1)

Science ◽  
2020 ◽  
Vol 368 (6496) ◽  
pp. 1205-1210 ◽  
Author(s):  
Anjali Bisaria ◽  
Arnold Hayer ◽  
Damien Garbett ◽  
Daniel Cohen ◽  
Tobias Meyer

Cell migration is driven by local membrane protrusion through directed polymerization of F-actin at the front. However, F-actin next to the plasma membrane also tethers the membrane and thus resists outgoing protrusions. Here, we developed a fluorescent reporter to monitor changes in the density of membrane-proximal F-actin (MPA) during membrane protrusion and cell migration. Unlike the total F-actin concentration, which was high in the front of migrating cells, MPA density was low in the front and high in the back. Back-to-front MPA density gradients were controlled by higher cofilin-mediated turnover of F-actin in the front. Furthermore, nascent membrane protrusions selectively extended outward from areas where MPA density was reduced. Thus, locally low MPA density directs local membrane protrusions and stabilizes cell polarization during cell migration.


2019 ◽  
Author(s):  
Anjali Bisaria ◽  
Arnold Hayer ◽  
Damien Garbett ◽  
Daniel Cohen ◽  
Tobias Meyer

AbstractA major component of cell migration is F-actin polymerization driven membrane protrusion in the front. However, F-actin proximal to the plasma membrane also has a scaffolding role to support and attach the membrane. Here we developed a fluorescent reporter to monitor changes in the density of membrane proximal F-actin during membrane protrusion and cell migration. Strikingly, unlike total F-actin concentration, which is high in the front of migrating cells, the density of membrane proximal F-actin is low in the front and high in the back. Furthermore, local membrane protrusions only form following local decreases in membrane proximal F-actin density. Our study suggests that low density of membrane proximal F-actin is a fundamental structural parameter that locally directs membrane protrusions and globally stabilizes cell polarization during cell migration.One Sentence SummaryMembrane protrusion and cell migration are directed by local decreases in the density of membrane proximal F-actin


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Luyan Cao ◽  
Mikael Kerleau ◽  
Emiko L. Suzuki ◽  
Hugo Wioland ◽  
Sandy Jouet ◽  
...  

Formins are major regulators of actin networks. They enhance actin filament dynamics by remaining processively bound to filament barbed ends. How biochemical and mechanical factors affect formin processivity are open questions. Monitoring individual actin filaments in a microfluidic flow, we report that formins mDia1 and mDia2 dissociate faster under higher ionic strength and when actin concentration is increased. Profilin, known to increase the elongation rate of formin-associated filaments, surprisingly decreases the formin dissociation rate, by bringing formin FH1 domains in transient contact with the barbed end. In contrast, piconewton tensile forces applied to actin filaments accelerate formin dissociation by orders of magnitude, largely overcoming profilin-mediated stabilization. We developed a model of formin conformations showing that our data indicates the existence of two different dissociation pathways, with force favoring one over the other. How cells limit formin dissociation under tension is now a key question for future studies.


2017 ◽  
Author(s):  
Mikael Kerleau ◽  
Luyan Cao ◽  
Emiko Suzuki ◽  
Hugo Wioland ◽  
Sandy Jouet ◽  
...  

ABSTRACTFormins are major regulators of actin networks. They enhance actin filament dynamics by remaining processively bound to filament barbed ends. How biochemical and mechanical factors affect formin processivity are open questions. Monitoring individual actin filaments in a microfluidic flow, we report that formin mDia1 dissociates faster under higher ionic strength and when actin concentration is increased. Profilin, known to increase the elongation rate of formin-associated filaments, surprisingly decreases the formin dissociation rate, by bringing formin FH1 domains in transient contact with the barbed end. In contrast, piconewton tensile forces applied to actin filaments accelerate formin dissociation by orders of magnitude, largely overcoming profilin-mediated stabilization. We developed a model of formin conformations and its confrontation to our data indicates the existence of two different dissociation pathways, with force favoring one over the other. How cells limit formin dissociation under tension is now a key question for future studies.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Richard Panayiotou ◽  
Francesc Miralles ◽  
Rafal Pawlowski ◽  
Jessica Diring ◽  
Helen R Flynn ◽  
...  

The myocardin-related transcription factors (MRTF-A and MRTF-B) regulate cytoskeletal genes through their partner transcription factor SRF. The MRTFs bind G-actin, and signal-regulated changes in cellular G-actin concentration control their nuclear accumulation. The MRTFs also undergo Rho- and ERK-dependent phosphorylation, but the function of MRTF phosphorylation, and the elements and signals involved in MRTF-A nuclear export are largely unexplored. We show that Rho-dependent MRTF-A phosphorylation reflects relief from an inhibitory function of nuclear actin. We map multiple sites of serum-induced phosphorylation, most of which are S/T-P motifs and show that S/T-P phosphorylation is required for transcriptional activation. ERK-mediated S98 phosphorylation inhibits assembly of G-actin complexes on the MRTF-A regulatory RPEL domain, promoting nuclear import. In contrast, S33 phosphorylation potentiates the activity of an autonomous Crm1-dependent N-terminal NES, which cooperates with five other NES elements to exclude MRTF-A from the nucleus. Phosphorylation thus plays positive and negative roles in the regulation of MRTF-A.


2011 ◽  
Vol 317 (16) ◽  
pp. 2384-2389 ◽  
Author(s):  
Xiaodong Zhu ◽  
Junxia Wang ◽  
Kazuki Moriguchi ◽  
Lu Ting Liow ◽  
Sohail Ahmed ◽  
...  

2011 ◽  
Vol 193 (2) ◽  
pp. 365-380 ◽  
Author(s):  
Tai Kiuchi ◽  
Tomoaki Nagai ◽  
Kazumasa Ohashi ◽  
Kensaku Mizuno

To understand the intracellular role of G-actin concentration in stimulus-induced actin assembly and lamellipodium extension during cell migration, we developed a novel technique for quantifying spatiotemporal changes in G-actin concentration in live cells, consisting of sequential measurements of fluorescent decay after photoactivation (FDAP) of Dronpa-labeled actin. Cytoplasmic G-actin concentrations decreased by ∼40% immediately after cell stimulation and thereafter the cell area extended. The extent of stimulus-induced G-actin loss and cell extension correlated linearly with G-actin concentration in unstimulated cells, even at concentrations much higher than the critical concentration of actin filaments, indicating that cytoplasmic G-actin concentration is a critical parameter for determining the extent of stimulus-induced G-actin assembly and cell extension. Multipoint FDAP analysis revealed that G-actin concentration in lamellipodia was comparable to that in the cell body. We also assessed the cellular concentrations of free G-actin, profilin- and thymosin-β4–bound G-actin, and free barbed and pointed ends of actin filaments by model fitting of jasplakinolide-induced temporal changes in G-actin concentration.


2008 ◽  
Vol 19 (1) ◽  
pp. 318-326 ◽  
Author(s):  
Mian Zhou ◽  
Yu-Li Wang

Equatorial organization of myosin II and actin has been recognized as a universal event in cytokinesis of animal cells. Current models for the formation of equatorial cortex favor either directional cortical transport toward the equator or localized de novo assembly. However, this process has never been analyzed directly in dividing mammalian cells at a high resolution. Here we applied total internal reflection fluorescence microscope (TIRF-M), coupled with spatial temporal image correlation spectroscopy (STICS) and a new analytical approach termed temporal differential microscopy (TDM), to image the dynamics of myosin II and actin during the assembly of equatorial cortex. Our results indicated distinct and at least partially independent mechanisms for the early equatorial recruitment of myosin and actin filaments. Cortical myosin showed no detectable directional flow during early cytokinesis. In addition to equatorial assembly, we showed that localized inhibition of disassembly contributed to the formation of the equatorial myosin band. In contrast to myosin, actin filaments underwent a striking flux toward the equator. Myosin motor activity was required for the actin flux, but not for actin concentration in the furrow, suggesting that there was a flux-independent, de novo mechanism for actin recruitment along the equator. Our results indicate that cytokinesis involves signals that regulate both assembly and disassembly activities and argue against mechanisms that are coupled to global cortical movements.


2004 ◽  
Vol 167 (6) ◽  
pp. 1011-1017 ◽  
Author(s):  
Michael M. Kozlov ◽  
Alexander D. Bershadsky

Regulation of actin polymerization is essential for cell functioning. Here, we predict a novel phenomenon—the force-driven polymerization of actin filaments mediated by proteins of the formin family. Formins localize to the barbed ends of actin filaments, but, in contrast to the standard capping proteins, allow for actin polymerization in the barbed direction. First, we show that the mechanism of such “leaky capping” can be understood in terms of the elasticity of the formin molecules. Second, we demonstrate that if a pulling force acts on the filament end via the leaky cap, the elastic stresses can drive actin polymerization. We estimate that a moderate pulling force of ∼3.4 pN is sufficient to reduce the critical actin concentration required for barbed end polymerization by an order of magnitude. Furthermore, the pulling force increases the polymerization rate. The suggested mechanism of force-driven polymerization could be a key element in a variety of cellular mechanosensing devices.


2004 ◽  
Vol 15 (10) ◽  
pp. 4522-4531 ◽  
Author(s):  
Brian K. Haarer ◽  
David C. Amberg

Old Yellow Enzyme (OYE) has long served as a paradigm for the study of flavin-containing NADPH oxido-reductases and yet its physiological role has remained a mystery. A two-hybrid interaction between Oye2p and actin led us to investigate a possible function in the actin cytoskeleton. We found that oye deletion strains have an overly elaborate actin cytoskeleton that cannot be attributed to changes in actin concentration but likely reflect stabilization of actin filaments, resulting in excessive actin assembly. Cells expressing the actin mutant act1-123p, which has a weakened interaction with Oye2p, show comparable defects in actin organization to the oye deletion strain that can be suppressed by overexpression of Oye2p. Similarly, mutation of either conserved cysteine of the potential disulfide pair Cys285-Cys374 in actin completely suppresses the actin organization defect of the oyeΔ phenotype. Strains lacking Oye function are also sensitive to oxidative stress as induced by H2O2, menadione, and diamide treatment. Mutation of either Cys285 or Cys374 of actin suppresses the sensitivity of oyeΔ strains to oxidative stress and in fact confers super-resistance to oxidative stress in otherwise wild-type strains. These results suggest that oxidative damage to actin, like that which has been observed in irreversibly sickled red blood cells, may be a general phenomenon and that OYE functions to control the redox state of actin thereby maintaining the proper plasticity of the actin cytoskeleton. In addition to uncovering a long sought biological function for Old Yellow Enzyme, these results establish that cellular sensitivity to oxidative stress can in part be directly attributed to a specific form (C285-C374 disulfide bond formation) of oxidative damage to actin.


Sign in / Sign up

Export Citation Format

Share Document