scholarly journals CHROMOSOMAL TRANSLOCATIONS GENERATED BY HIGH-FREQUENCY MEIOTIC RECOMBINATION BETWEEN REPEATED YEAST GENES

Genetics ◽  
1986 ◽  
Vol 114 (3) ◽  
pp. 731-752
Author(s):  
Sue Jinks-Robertson ◽  
Thomas D Petes

ABSTRACT We have examined meiotic and mitotic recombination between repeated genes on nonhomologous chromosomes in the yeast Saccharomyces cerevisiae . The results of these experiments can be summarized in three statements. First, gene conversion events between repeats on nonhomologous chromosomes occur frequently in meiosis. The frequency of such conversion events is only 17-fold less than the analogous frequency of conversion between genes at allelic positions on homologous chromosomes. Second, meiotic and mitotic conversion events between repeated genes on nonhomologous chromosomes are associated with reciprocal recombination to the same extent as conversion between allelic sequences. The reciprocal exchanges between the repeated genes result in chromosomal translocations. Finally, recombination between repeated genes on nonhomologous chromosomes occurs much more frequently in meiosis than in mitosis.

1992 ◽  
Vol 12 (4) ◽  
pp. 1805-1814
Author(s):  
P Detloff ◽  
T D Petes

During meiotic recombination in the yeast Saccharomyces cerevisiae, heteroduplexes are formed at a high frequency between HIS4 genes located on homologous chromosomes. Using mutant alleles of the HIS4 gene that result in poorly repaired mismatches in heteroduplex DNA, we find that heteroduplexes often span a distance of 1.8 kb. In addition, we show that about one-third of the repair tracts initiated at well-repaired mismatches extend 900 bp.


1992 ◽  
Vol 12 (4) ◽  
pp. 1805-1814 ◽  
Author(s):  
P Detloff ◽  
T D Petes

During meiotic recombination in the yeast Saccharomyces cerevisiae, heteroduplexes are formed at a high frequency between HIS4 genes located on homologous chromosomes. Using mutant alleles of the HIS4 gene that result in poorly repaired mismatches in heteroduplex DNA, we find that heteroduplexes often span a distance of 1.8 kb. In addition, we show that about one-third of the repair tracts initiated at well-repaired mismatches extend 900 bp.


1990 ◽  
Vol 10 (6) ◽  
pp. 2485-2491 ◽  
Author(s):  
R H Schiestl ◽  
S Prakash

The RAD10 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of UV-damaged DNA. We show that the RAD10 gene is also required for mitotic recombination. The rad10 delta mutation lowered the rate of intrachromosomal recombination of a his3 duplication in which one his3 allele has a deletion at the 3' end and the other his3 allele has a deletion at the 5' end (his3 delta 3' his3 delta 5'). The rate of formation of HIS3+ recombinants in the rad10 delta mutant was not affected by the rad1 delta mutation but decreased synergistically in the presence of the rad10 delta mutation in combination with the rad52 delta mutation. These observations indicate that the RAD1 and RAD10 genes function together in a mitotic recombination pathway that is distinct from the RAD52 recombination pathway. The rad10 delta mutation also lowered the efficiency of integration of linear DNA molecules and circular plasmids into homologous genomic sequences. We suggest that the RAD1 and RAD10 gene products act in recombination after the formation of the recombinogenic substrate. The rad1 delta and rad10 delta mutations did not affect meiotic intrachromosomal recombination of the his3 delta 3' his3 delta 5' duplication or mitotic and meiotic recombination of ade2 heteroalleles located on homologous chromosomes.


Genetics ◽  
1988 ◽  
Vol 119 (1) ◽  
pp. 21-34
Author(s):  
C W Moore ◽  
D M Hampsey ◽  
J F Ernst ◽  
F Sherman

Abstract Recombination rates have been examined in two-point crosses of various defined cyc1 mutations that cause the loss or nonfunction of iso-1-cytochrome c in the yeast Saccharomyces cerevisiae. Recombinants arising by three different means were investigated, including X-ray induced mitotic recombination, spontaneous mitotic recombination, and meiotic recombination. Heteroallelic diploid strains were derived by crossing cyc1 mutants containing a series of alterations at or near the same site to cyc1 mutants containing alterations at various distances. Marked disproportionalities between physical distances and recombination frequencies were observed with certain cyc1 mutations, indicating that certain mismatched bases can significantly affect recombination. The marker effects were more pronounced when the two mutational sites of the heteroalleles were within about 20 base pairs, but separated by at least 4 base pairs. Two alleles, cyc1-163 and cyc1-166, which arose by G.C----C.G transversions at nucleotide positions 3 and 194, respectively, gave rise to especially high rates of recombination. Other mutations having different substitutions at the same nucleotide positions were not associated with abnormally high recombination frequencies. We suggest that these marker effects are due to the lack of repair of either G/G or C/C mismatched base pairs, while the other mismatched base pair of the heteroallele undergoes substantial repair. Furthermore, we suggest that diminished recombination frequencies are due to the concomitant repair of both mismatches within the same DNA tract.


Genetics ◽  
1992 ◽  
Vol 132 (1) ◽  
pp. 113-123 ◽  
Author(s):  
P Detloff ◽  
M A White ◽  
T D Petes

Abstract Heteroduplexes formed between genes on homologous chromosomes are intermediates in meiotic recombination. In the HIS4 gene of Saccharomyces cerevisiae, most mutant alleles at the 5' end of the gene have a higher rate of meiotic recombination (gene conversion) than mutant alleles at the 3' end of the gene. Such gradients are usually interpreted as indicating a higher frequency of heteroduplex formation at the high conversion end of the gene. We present evidence indicating that the gradient of conversion at HIS4 primarily reflects the direction of mismatch repair rather than the frequency of heteroduplex formation. We also identify a site located between the 5' end of HIS4 and the 3' end of BIK1 that stimulates heteroduplex formation at HIS4 and BIK1.


Genome ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. 536-540 ◽  
Author(s):  
Thomas D. Petes ◽  
Peter Detloff ◽  
Sue Jinks-Robertson ◽  
S. Renee Judd ◽  
Martin Kupiec ◽  
...  

The development of methods to isolate eukaryotic genes, alter these genes in vitro and reintroduce them into the cell has had a major impact on the study of recombination in the yeast Saccharomyces cerevisiae. In this paper we discuss how recombinant DNA techniques have been employed in the study of recombination in yeast and the results that have been obtained in these studies.Key words: recombination, Saccharomyces cerevisiae, gene conversion, repeated genes.


Genetics ◽  
1990 ◽  
Vol 125 (2) ◽  
pp. 333-340 ◽  
Author(s):  
L P Wakem ◽  
F Sherman

Abstract Yeast 2-microns plasmids were integrated near the centromere of a different chromosome in each of 16 cir0 mapping strains of Saccharomyces cerevisiae. The specific chromosomes containing the integrated 2-microns plasmid DNA were lost at a high frequency after crossing the cir0 strains to cir+ strains. A recessive mutation in a cir+ strain can then be easily assigned to its chromosome using this set of mapping strains, since the phenotype of the recessive mutation will be manifested only in diploids having the integrated 2-microns plasmid and the unmapped mutation on homologous chromosomes.


1990 ◽  
Vol 10 (6) ◽  
pp. 2485-2491
Author(s):  
R H Schiestl ◽  
S Prakash

The RAD10 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of UV-damaged DNA. We show that the RAD10 gene is also required for mitotic recombination. The rad10 delta mutation lowered the rate of intrachromosomal recombination of a his3 duplication in which one his3 allele has a deletion at the 3' end and the other his3 allele has a deletion at the 5' end (his3 delta 3' his3 delta 5'). The rate of formation of HIS3+ recombinants in the rad10 delta mutant was not affected by the rad1 delta mutation but decreased synergistically in the presence of the rad10 delta mutation in combination with the rad52 delta mutation. These observations indicate that the RAD1 and RAD10 genes function together in a mitotic recombination pathway that is distinct from the RAD52 recombination pathway. The rad10 delta mutation also lowered the efficiency of integration of linear DNA molecules and circular plasmids into homologous genomic sequences. We suggest that the RAD1 and RAD10 gene products act in recombination after the formation of the recombinogenic substrate. The rad1 delta and rad10 delta mutations did not affect meiotic intrachromosomal recombination of the his3 delta 3' his3 delta 5' duplication or mitotic and meiotic recombination of ade2 heteroalleles located on homologous chromosomes.


Genetics ◽  
1985 ◽  
Vol 109 (2) ◽  
pp. 303-332
Author(s):  
Jennifer A Jackson ◽  
Gerald R Fink

ABSTRACT We have studied the meiotic recombination behavior of strains carrying two types of duplications of an 18.6-kilobase HIS4 BamHI fragment. The first type is a direct duplication of the HIS4 BamHI fragment in which the repeated sequences are separated by Escherichia coli plasmid sequences. The second type, a tandem duplication, has no sequences intervening between the repeated yeast DNA. The HIS4 genes in each region were marked genetically so that recombination events between the duplicated segments could be identified. Meiotic progeny of the strains carrying the duplication were analyzed genetically and biochemically to determine the types of recombination events that had occurred. Analysis of the direct vs. tandem duplication suggests that the E. coli plasmid sequences are recombinogenic in yeast when homozygous. In both types of duplications recombination between the duplicated HIS4 regions occurs at high frequency and involves predominantly interchromosomal reciprocal exchanges (equal and unequal crossovers). The striking observation is that intrachromosomal reciprocal recombination is very rare in comparison with interchromosomal reciprocal recombination. However, intrachromosomal gene conversion occurs at about the same frequency as interchromosomal gene conversion. Reciprocal recombination events between regions on the same chromatid are the most infrequent exchanges. These data suggest that intrachromosomal reciprocal exchanges are suppressed.


Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 69-78
Author(s):  
Sue Jinks-Robertson ◽  
Shariq Sayeed ◽  
Tamara Murphy

Meiotic recombination between artificial repeats positioned on nonhomologous chromosomes occurs efficiently in the yeast Saccharomyces cerevisiae. Both gene conversion and crossover eventS have been observed, with crossovers yielding reciprocal translocations. In the current study, 5.5-kb ura3 repeats positioned on chromosomes V and XV were used to examine the effect of ectopic recombination on meiotic chromosome segregation. Ura+ random spores were selected and gene conversion vs. crossover events were distinguished by Southern blot analysis. Approximately 15% of the crossover events between chromosomes V and XV were associated with missegregation of one of these chromosomes. The missegregation was manifest as hyperploid spores containing either both translocations plus a normal chromosome, or both normal chromosomes plus one of the translocations. In those cases where it could be analyzed, missegregation occurred at the first meiotic division. These data are discussed in terms of a model in which ectopic crossovers compete efficiently with normal allelic crossovers in directing meiotic chromosome segregation.


Sign in / Sign up

Export Citation Format

Share Document