scholarly journals The Caenorhabditis elegans gene sdc-2 controls sex determination and dosage compensation in XX animals.

Genetics ◽  
1989 ◽  
Vol 122 (3) ◽  
pp. 579-593 ◽  
Author(s):  
C Nusbaum ◽  
B J Meyer

Abstract We have identified a new X-linked gene, sdc-2, that controls the hermaphrodite (XX) modes of both sex determination and X chromosome dosage compensation in Caenorhabditis elegans. Mutations in sdc-2 cause phenotypes that appear to result from a shift of both the sex determination and dosage compensation processes in XX animals to the XO modes of expression. Twenty-eight independent sdc-2 mutations have no apparent effect in XO animals, but cause two distinct phenotypes in XX animals: masculinization, reflecting a defect in sex determination, and lethality or dumpiness, reflecting a disruption in dosage compensation. The dosage compensation defect can be demonstrated directly by showing that sdc-2 mutations cause elevated levels of several X-linked transcripts in XX but not XO animals. While the masculinization is blocked by mutations in sex determining genes required for male development (her-1 and fem-3), the lethality, dumpiness and overexpression of X-linked genes are not, indicating that the effect of sdc-2 mutations on sex determination and dosage compensation are ultimately implemented by two independent pathways. We propose a model in which sdc-2 is involved in the coordinate control of both sex determination and dosage compensation in XX animals and acts in the regulatory hierarchy at a step prior to the divergence of the two pathways.

Genetics ◽  
1988 ◽  
Vol 119 (2) ◽  
pp. 365-375
Author(s):  
P M Meneely ◽  
K D Nordstrom

Abstract X chromosome duplications have been used previously to vary the dose of specific regions of the X chromosome to study dosage compensation and sex determination in Caenorhabditis elegans. We show here that duplications suppress and X-linked hypomorphic mutation and elevate the level of activity of an X-linked enzyme, although these two genes are located in a region of the X chromosome that is not duplicated. The effects do not depend on the region of the X chromosome duplicated and is stronger in strains with two doses of a duplication than in strains with one dose. This is evidence for a general elevation of X-linked gene expression in strains carrying X-chromosome duplications, consistent with the hypothesis that the duplications titrate a repressor acting on many X-linked genes.


Genetics ◽  
1994 ◽  
Vol 138 (4) ◽  
pp. 1105-1125
Author(s):  
C C Akerib ◽  
B J Meyer

Abstract The primary sex-determination signal of Caenorhabditis elegans is the ratio of X chromosomes to sets of autosomes (X/A ratio). This signal coordinately controls both sex determination and X chromosome dosage compensation. To delineate regions of X that contain counted signal elements, we examined the effect on the X/A ratio of changing the dose of specific regions of X, using duplications in XO animals and deficiencies in XX animals. Based on the mutant phenotypes of genes that are controlled by the signal, we expected that increases (in males) or decreases (in hermaphrodites) in the dose of X chromosome elements could cause sex-specific lethality. We isolated duplications and deficiencies of specific X chromosome regions, using strategies that would permit their recovery regardless of whether they affect the signal. We identified a dose-sensitive region at the left end of X that contains X chromosome signal elements. XX hermaphrodites with only one dose of this region have sex determination and dosage compensation defects, and XO males with two doses are more severely affected and die. The hermaphrodite defects are suppressed by a downstream mutation that forces all animals into the XX mode of sex determination and dosage compensation. The male lethality is suppressed by mutations that force all animals into the XO mode of both processes. We were able to subdivide this region into three smaller regions, each of which contains at least one signal element. We propose that the X chromosome component of the sex-determination signal is the dose of a relatively small number of genes.


Genetics ◽  
1994 ◽  
Vol 137 (4) ◽  
pp. 999-1018 ◽  
Author(s):  
D R Hsu ◽  
B J Meyer

Abstract The need to regulate X chromosome expression in Caenorhabditis elegans arises as a consequence of the primary sex-determining signal, the X/A ratio (the ratio of X chromosomes to sets of autosomes), which directs 1X@A animals to develop as males and 2X/2A animals to develop as hermaphrodites. C. elegans possesses a dosage compensation mechanism that equalizes X chromosome expression between the two sexes despite their disparity in X chromosome dosage. Previous genetic analysis led to the identification of four autosomal genes, dpy-21, dpy-26, dpy-27 and dpy-28, whose products are essential in XX animals for proper dosage compensation, but not for sex determination. We report the identification and characterization of dpy-30, an essential component of the dosage compensation machinery. Putative null mutations in dpy-30 disrupt dosage compensation and cause a severe maternal-effect, XX-specific lethality. Rare survivors of the dpy-30 lethality are dumpy and express their X-linked genes at higher than wild-type levels. These dpy-30 mutant phenotypes superficially resemble those caused by mutations in dpy-26, dpy-27 and dpy-28; however, detailed phenotypic analysis reveals important differences that distinguish dpy-30 from these genes. In contrast to the XX-specific lethality caused by mutations in the other dpy genes, the XX-specific lethality caused by dpy-30 mutations is completely penetrant and temperature sensitive. In addition, unlike the other genes, dpy-30 is required for the normal development of XO animals. Although dpy-30 mutations do not significantly affect the viability of XO animals, they do cause them to be developmentally delayed and to possess numerous morphological and behavioral abnormalities. Finally, dpy-30 mutations can dramatically influence the choice of sexual fate in animals with an ambiguous sexual identity, despite having no apparent effect on the sexual phenotype of otherwise wild-type animals. Paradoxically, depending on the genetic background, dpy-30 mutations cause either masculinization or feminization, thus revealing the complex regulatory relationship between the sex determination and dosage compensation processes. The novel phenotypes caused by dpy-30 mutations suggest that in addition to acting in the dosage compensation process, dpy-30 may play a more general role in the development of both XX and XO animals.


2009 ◽  
Vol 29 (8) ◽  
pp. 2023-2031 ◽  
Author(s):  
Timothy A. Blauwkamp ◽  
Gyorgyi Csankovszki

ABSTRACT Dosage compensation equalizes X-linked gene products between the sexes. In Caenorhabditis elegans, the dosage compensation complex (DCC) binds both X chromosomes in XX animals and halves the transcription from each. The DCC is recruited to the X chromosomes by a number of loci, rex sites, and is thought to spread from these sites by an unknown mechanism to cover the rest of the chromosome. Here we describe a novel class of DCC-binding elements that we propose serve as “way stations” for DCC binding and spreading. Both rex sites and way stations comprise strong foci of DCC binding on the native X chromosome. However, rex sites maintain their ability to bind large amounts of DCC even on X duplications detached from the native X, while way stations do not. These results suggest that two distinct classes of DCC-binding elements facilitate recruitment and spreading of the DCC along the X chromosome.


Genetics ◽  
1990 ◽  
Vol 124 (1) ◽  
pp. 91-114 ◽  
Author(s):  
A M Villeneuve ◽  
B J Meyer

Abstract Our previous work demonstrated that mutations in the X-linked gene sdc-1 disrupt both sex determination and dosage compensation in Caenorhabditis elegans XX animals, suggesting that sdc-1 acts at a step that is shared by the sex determination and dosage compensation pathways prior to their divergence. In this report, we extend our understanding of early events in C. elegans sex determination and dosage compensation and the role played by sdc-1 in these processes. First, our analysis of 14 new sdc-1 alleles suggests that the phenotypes resulting from the lack of sdc-1 function are (1) an incompletely penetrant sexual transformation of XX animals toward the male fate, and (2) increased levels of X-linked gene transcripts in XX animals, correlated with XX-specific morphological defects but not significant XX-specific lethality. Further, all alleles exhibit strong maternal rescue for all phenotypes assayed. Second, temperature-shift experiments suggest that sdc-1 acts during the first half of embryogenesis in determining somatic sexual phenotype, long before sexual differentiation actually takes place, and consistent with our previous proposal that sdc-1 acts at an early step in the regulatory hierarchy controlling the choice of sexual fate. Other temperature-shift experiments suggest that sdc-1 may be involved in establishing but not maintaining the XX mode of dosage compensation. Third, a genetic mosaic analysis of sdc-1 produced an unusual result: the genotypic mosaics failed to display the sdc-1 sexual transformation phenotypes. This result suggests several possible interpretations: (1) sdc-1 is expressed immediately, in the one- or two-celled embryo; (2) sdc-1 acts non-cell-autonomously, such that expression of the gene in either the AB or P1 lineage can supply sdc-1(+) function to cells of the other lineage; (3) the X/A ratio is assessed immediately, in the one- or two-celled embryo; or (4) the X/A signal directs the choice of sexual fate in a non-cell-autonomous fashion. Finally, examination of the classes of sexual phenotypes produced in sdc-1 mutant strains suggests that different cells in the organism may not choose their sexual fates independently.


Genetics ◽  
1987 ◽  
Vol 117 (4) ◽  
pp. 657-670
Author(s):  
Leslie DeLong ◽  
Lawrence P Casson ◽  
Barbara J Meyer

ABSTRACT Caenorhabditis elegans compensates for the difference in X chromosome gene dose between males (XO) and hermaphrodites (XX) through a mechanism that equalizes the levels of X-specific mRNA transcripts between the two sexes. We have devised a sensitive and quantitative genetic assay to measure perturbations in X chromosome gene expression caused by mutations that affect this process of dosage compensation. The assay is based on quantitating the precocious alae phenotype caused by a mutation that reduces but does not eliminate the function of the X-linked gene lin-14. We demonstrate that in diploid animals the lin-14 gene is dosage compensated between XO and XX animals. In XXX diploid animals, however, lin-14 expression is not compensated, implying that the normal dosage compensation mechanism in C. elegans lacks the capacity to compensate completely for the additional X chromosome in triplex animals. Using the lin-14 assay we compare the effects of mutations in the genes dpy-21, dpy-26, dpy-27, dpy-28, and dpy-22 on X-linked gene expression. Additionally, in the case of dpy-21 we correlate the change in phenotypic expression of lin-14 with a corresponding change in the lin-14 mRNA transcript level.


Genetics ◽  
1989 ◽  
Vol 121 (1) ◽  
pp. 57-76 ◽  
Author(s):  
J D Plenefisch ◽  
L DeLong ◽  
B J Meyer

Abstract We report a genetic characterization of several essential components of the dosage compensation process in Caenorhabditis elegans. Mutations in the genes dpy-26, dpy-27, dpy-28, and the newly identified gene dpy-29 disrupt dosage compensation, resulting in elevated X-linked gene expression in XX animals and an incompletely penetrant maternal-effect XX-specific lethality. These dpy mutations appear to cause XX animals to express each set of X-linked genes at a level appropriate for XO animals. XO dpy animals are essentially wild type. Both the viability and the level of X-linked gene expression in XX animals carrying mutations in two or more dpy genes are the same as in animals carrying only a single mutation, consistent with the view that these genes act together in a single process (dosage compensation). To define a potential time of action for the gene dpd-28 we performed reciprocal temperature-shift experiments with a heat sensitive allele. The temperature-sensitive period for lethality begins 5 hr after fertilization at the 300-cell stage and extends to about 9 hr, a point well beyond the end of cell proliferation. This temperature-sensitive period suggests that dosage compensation is functioning in XX animals by mid-embryogenesis, when many zygotically transcribed genes are active. While mutations in the dpy genes have no effect on the sexual phenotype of otherwise wild-type XX or XO animals, they do have a slight feminizing effect on animals whose sex-determination process is already genetically perturbed. The opposite directions of the feminizing effects on sex determination and the masculinizing effects on dosage compensation caused by the dpy mutations are inconsistent with the wild-type dpy genes acting to coordinately control both processes. Instead, the feminizing effects are most likely an indirect consequence of disruptions in dosage compensation caused by the dpy mutations. Based on the cumulative evidence, the likely mechanism of dosage compensation in C. elegans involves reducing X-linked gene expression in XX animals to equal that in XO animals via the action of the dpy genes.


Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 467-481
Author(s):  
P M Meneely

Abstract In Caenorhabditis elegans triploid animals with two X chromosomes (symbolized 3A;2X) are males. However, these triploid males can be feminized by making them mutant for recessive dosage compensation mutations, by adding X chromosome duplications or by microinjecting particular DNA sequences termed feminizing elements. None of these treatments affects diploid males. This study explores several aspects of these treatments in polyploids. The dosage compensation mutants exhibit a strong maternal effect, such that reduction of any of the dosage compensation gene functions in the mother leads to sex reversal of 3A;2X animals. Likewise, all X chromosome duplications tested cause both sex reversal and intersexual development of many 3A;2X animals. Microinjected feminizing element DNA does not cause extensive sex reversal, but does result in intersexual development in 3A;2X animals. Neither X chromosome duplications nor microinjected feminizing elements show that extreme maternal effect of the dosage compensation mutants, although there is indirect evidence for a maternal effect of the feminizing elements. In particular, very little feminizing element DNA needs to be microinjected in order to feminize triploid males, far less than what is needed for stable inheritance, implying that feminizing elements can work within the mother's gonad. However, even very high concentrations of microinjected feminizing elements do not affect sex determination in diploid males, suggesting that they are not part of the numerator of the X/A ratio. In addition, no pair of X chromosome duplications feminizes diploid males, suggesting that none of these duplications contains a numerator of the X/A ratio. Instead, I infer that an X-linked locus, as yet undefined, must be present in two copies for hermaphrodite development to ensue or that the two X chromosomes might interact.


Genetics ◽  
1984 ◽  
Vol 106 (1) ◽  
pp. 29-44
Author(s):  
Philip M Meneely ◽  
William B Wood

ABSTRACT Recessive mutant alleles at the autosomal dpy-21 locus of C. elegans cause a dumpy phenotype in XX animals but not in XO animals. This dumpy phenotype is characteristic of X chromosome aneuploids with higher than normal X to autosome ratios and is proposed to result from overexpression of X-linked genes. We have isolated a new dpy-21 allele that also causes partial hermaphroditization of XO males, without causing the dumpy phenotype. All dpy-21 alleles show hermaphroditization effects in XO males that carry a duplication of part of the X chromosome and also partially suppress a transformer (tra-1) mutation that converts XX animals into males. Experiments with a set of X chromosome duplications show that the defects of dpy-21 mutants can result from interaction with several different regions of the X chromosome. We propose that dpy-21 regulates X chromosome expression and may be involved in interpreting X chromosome dose for the developmental decisions of both sex determination and dosage compensation.


Genome ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. 625-637 ◽  
Author(s):  
Jonathan Hodgkin ◽  
Andrew D. Chisholm ◽  
Michael M. Shen

Sex determination in Caenorhabditis elegans involves a cascade of major regulatory genes connecting the primary sex determining signal, X chromosome dosage, to key switch genes, which in turn direct development along either male or female pathways. Animals with one X chromosome (XO) are male, while animals with two X chromosomes (XX) are hermaphrodite: hermaphrodite development occurs because the action of the regulatory genes is modified in the germ line so that both sperm and oocytes are made inside a completely female soma. The regulatory genes are being examined by both genetic and molecular means. We discuss how these major genes, in particular the last switch gene in the cascade, tra-1, might regulate the many different sex-specific events that occur during the development of the hermaphrodite and of the male.Key words: nematode, Caenorhabditis elegans, sex determination, sexual differentiation, cell lineage analysis.


Sign in / Sign up

Export Citation Format

Share Document