Identification of X chromosome regions in Caenorhabditis elegans that contain sex-determination signal elements.

Genetics ◽  
1994 ◽  
Vol 138 (4) ◽  
pp. 1105-1125
Author(s):  
C C Akerib ◽  
B J Meyer

Abstract The primary sex-determination signal of Caenorhabditis elegans is the ratio of X chromosomes to sets of autosomes (X/A ratio). This signal coordinately controls both sex determination and X chromosome dosage compensation. To delineate regions of X that contain counted signal elements, we examined the effect on the X/A ratio of changing the dose of specific regions of X, using duplications in XO animals and deficiencies in XX animals. Based on the mutant phenotypes of genes that are controlled by the signal, we expected that increases (in males) or decreases (in hermaphrodites) in the dose of X chromosome elements could cause sex-specific lethality. We isolated duplications and deficiencies of specific X chromosome regions, using strategies that would permit their recovery regardless of whether they affect the signal. We identified a dose-sensitive region at the left end of X that contains X chromosome signal elements. XX hermaphrodites with only one dose of this region have sex determination and dosage compensation defects, and XO males with two doses are more severely affected and die. The hermaphrodite defects are suppressed by a downstream mutation that forces all animals into the XX mode of sex determination and dosage compensation. The male lethality is suppressed by mutations that force all animals into the XO mode of both processes. We were able to subdivide this region into three smaller regions, each of which contains at least one signal element. We propose that the X chromosome component of the sex-determination signal is the dose of a relatively small number of genes.

Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 467-481
Author(s):  
P M Meneely

Abstract In Caenorhabditis elegans triploid animals with two X chromosomes (symbolized 3A;2X) are males. However, these triploid males can be feminized by making them mutant for recessive dosage compensation mutations, by adding X chromosome duplications or by microinjecting particular DNA sequences termed feminizing elements. None of these treatments affects diploid males. This study explores several aspects of these treatments in polyploids. The dosage compensation mutants exhibit a strong maternal effect, such that reduction of any of the dosage compensation gene functions in the mother leads to sex reversal of 3A;2X animals. Likewise, all X chromosome duplications tested cause both sex reversal and intersexual development of many 3A;2X animals. Microinjected feminizing element DNA does not cause extensive sex reversal, but does result in intersexual development in 3A;2X animals. Neither X chromosome duplications nor microinjected feminizing elements show that extreme maternal effect of the dosage compensation mutants, although there is indirect evidence for a maternal effect of the feminizing elements. In particular, very little feminizing element DNA needs to be microinjected in order to feminize triploid males, far less than what is needed for stable inheritance, implying that feminizing elements can work within the mother's gonad. However, even very high concentrations of microinjected feminizing elements do not affect sex determination in diploid males, suggesting that they are not part of the numerator of the X/A ratio. In addition, no pair of X chromosome duplications feminizes diploid males, suggesting that none of these duplications contains a numerator of the X/A ratio. Instead, I infer that an X-linked locus, as yet undefined, must be present in two copies for hermaphrodite development to ensue or that the two X chromosomes might interact.


Genome ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. 625-637 ◽  
Author(s):  
Jonathan Hodgkin ◽  
Andrew D. Chisholm ◽  
Michael M. Shen

Sex determination in Caenorhabditis elegans involves a cascade of major regulatory genes connecting the primary sex determining signal, X chromosome dosage, to key switch genes, which in turn direct development along either male or female pathways. Animals with one X chromosome (XO) are male, while animals with two X chromosomes (XX) are hermaphrodite: hermaphrodite development occurs because the action of the regulatory genes is modified in the germ line so that both sperm and oocytes are made inside a completely female soma. The regulatory genes are being examined by both genetic and molecular means. We discuss how these major genes, in particular the last switch gene in the cascade, tra-1, might regulate the many different sex-specific events that occur during the development of the hermaphrodite and of the male.Key words: nematode, Caenorhabditis elegans, sex determination, sexual differentiation, cell lineage analysis.


Genetics ◽  
1989 ◽  
Vol 122 (3) ◽  
pp. 579-593 ◽  
Author(s):  
C Nusbaum ◽  
B J Meyer

Abstract We have identified a new X-linked gene, sdc-2, that controls the hermaphrodite (XX) modes of both sex determination and X chromosome dosage compensation in Caenorhabditis elegans. Mutations in sdc-2 cause phenotypes that appear to result from a shift of both the sex determination and dosage compensation processes in XX animals to the XO modes of expression. Twenty-eight independent sdc-2 mutations have no apparent effect in XO animals, but cause two distinct phenotypes in XX animals: masculinization, reflecting a defect in sex determination, and lethality or dumpiness, reflecting a disruption in dosage compensation. The dosage compensation defect can be demonstrated directly by showing that sdc-2 mutations cause elevated levels of several X-linked transcripts in XX but not XO animals. While the masculinization is blocked by mutations in sex determining genes required for male development (her-1 and fem-3), the lethality, dumpiness and overexpression of X-linked genes are not, indicating that the effect of sdc-2 mutations on sex determination and dosage compensation are ultimately implemented by two independent pathways. We propose a model in which sdc-2 is involved in the coordinate control of both sex determination and dosage compensation in XX animals and acts in the regulatory hierarchy at a step prior to the divergence of the two pathways.


Genetics ◽  
1999 ◽  
Vol 152 (3) ◽  
pp. 999-1015 ◽  
Author(s):  
Ilil Carmi ◽  
Barbara J Meyer

AbstractAn X chromosome counting process determines sex in Caenorhabditis elegans. The dose of X chromosomes is translated into sexual fate by a set of X-linked genes that together control the activity of the sex-determination and dosage-compensation switch gene, xol-1. The double dose of X elements in XX animals represses xol-1 expression, promoting the hermaphrodite fate, while the single dose of X elements in XO animals permits high xol-1 expression, promoting the male fate. Previous work has revealed at least four signal elements that repress xol-1 expression at two levels, transcriptional and post-transcriptional. The two molecularly characterized elements include an RNA binding protein and a nuclear hormone receptor homolog. Here we explore the roles of the two mechanisms of xol-1 repression and further investigate how the combined dose of X signal elements ensures correct, sex-specific expression of xol-1. By studying the effects of increases and decreases in X signal element dose on male and hermaphrodite fate, we demonstrate that signal elements repress xol-1 cumulatively, such that full repression of xol-1 in XX animals results from the combined effect of individual elements. Complete transformation from the hermaphrodite to the male fate requires a decrease in the dose of all four elements, from two copies to one. We show that both mechanisms of xol-1 repression are essential and act synergistically to keep xol-1 levels low in XX animals. However, increasing repression by one mechanism can compensate for loss of the other, demonstrating that each mechanism can exert significant xol-1 repression on its own. Finally, we present evidence suggesting that xol-1 activity can be set at intermediate levels in response to an intermediate X signal.


Genetics ◽  
2000 ◽  
Vol 156 (4) ◽  
pp. 1603-1621
Author(s):  
Jason D Lieb ◽  
Carlos Ortiz de Solorzano ◽  
Enrique Garcia Rodriguez ◽  
Arthur Jones ◽  
Michael Angelo ◽  
...  

Abstract The dosage compensation machinery of Caenorhabditis elegans is targeted specifically to the X chromosomes of hermaphrodites (XX) to reduce gene expression by half. Many of the trans-acting factors that direct the dosage compensation machinery to X have been identified, but none of the proposed cis-acting X chromosome-recognition elements needed to recruit dosage compensation components have been found. To study X chromosome recognition, we explored whether portions of an X chromosome attached to an autosome are competent to bind the C. elegans dosage compensation complex (DCC). To do so, we devised a three-dimensional in situ approach that allowed us to compare the volume, position, and number of chromosomal and subchromosomal bodies bound by the dosage compensation machinery in wild-type XX nuclei and XX nuclei carrying an X duplication. The dosage compensation complex was found to associate with a duplication of the right 30% of X, but the complex did not spread onto adjacent autosomal sequences. This result indicates that all the information required to specify X chromosome identity resides on the duplication and that the dosage compensation machinery can localize to a site distinct from the full-length hermaphrodite X chromosome. In contrast, smaller duplications of other regions of X appeared to not support localization of the DCC. In a separate effort to identify cis-acting X recognition elements, we used a computational approach to analyze genomic DNA sequences for the presence of short motifs that were abundant and overrepresented on X relative to autosomes. Fourteen families of X-enriched motifs were discovered and mapped onto the X chromosome.


Genetics ◽  
1994 ◽  
Vol 137 (4) ◽  
pp. 999-1018 ◽  
Author(s):  
D R Hsu ◽  
B J Meyer

Abstract The need to regulate X chromosome expression in Caenorhabditis elegans arises as a consequence of the primary sex-determining signal, the X/A ratio (the ratio of X chromosomes to sets of autosomes), which directs 1X@A animals to develop as males and 2X/2A animals to develop as hermaphrodites. C. elegans possesses a dosage compensation mechanism that equalizes X chromosome expression between the two sexes despite their disparity in X chromosome dosage. Previous genetic analysis led to the identification of four autosomal genes, dpy-21, dpy-26, dpy-27 and dpy-28, whose products are essential in XX animals for proper dosage compensation, but not for sex determination. We report the identification and characterization of dpy-30, an essential component of the dosage compensation machinery. Putative null mutations in dpy-30 disrupt dosage compensation and cause a severe maternal-effect, XX-specific lethality. Rare survivors of the dpy-30 lethality are dumpy and express their X-linked genes at higher than wild-type levels. These dpy-30 mutant phenotypes superficially resemble those caused by mutations in dpy-26, dpy-27 and dpy-28; however, detailed phenotypic analysis reveals important differences that distinguish dpy-30 from these genes. In contrast to the XX-specific lethality caused by mutations in the other dpy genes, the XX-specific lethality caused by dpy-30 mutations is completely penetrant and temperature sensitive. In addition, unlike the other genes, dpy-30 is required for the normal development of XO animals. Although dpy-30 mutations do not significantly affect the viability of XO animals, they do cause them to be developmentally delayed and to possess numerous morphological and behavioral abnormalities. Finally, dpy-30 mutations can dramatically influence the choice of sexual fate in animals with an ambiguous sexual identity, despite having no apparent effect on the sexual phenotype of otherwise wild-type animals. Paradoxically, depending on the genetic background, dpy-30 mutations cause either masculinization or feminization, thus revealing the complex regulatory relationship between the sex determination and dosage compensation processes. The novel phenotypes caused by dpy-30 mutations suggest that in addition to acting in the dosage compensation process, dpy-30 may play a more general role in the development of both XX and XO animals.


Genetics ◽  
1988 ◽  
Vol 119 (2) ◽  
pp. 365-375
Author(s):  
P M Meneely ◽  
K D Nordstrom

Abstract X chromosome duplications have been used previously to vary the dose of specific regions of the X chromosome to study dosage compensation and sex determination in Caenorhabditis elegans. We show here that duplications suppress and X-linked hypomorphic mutation and elevate the level of activity of an X-linked enzyme, although these two genes are located in a region of the X chromosome that is not duplicated. The effects do not depend on the region of the X chromosome duplicated and is stronger in strains with two doses of a duplication than in strains with one dose. This is evidence for a general elevation of X-linked gene expression in strains carrying X-chromosome duplications, consistent with the hypothesis that the duplications titrate a repressor acting on many X-linked genes.


2009 ◽  
Vol 29 (8) ◽  
pp. 2023-2031 ◽  
Author(s):  
Timothy A. Blauwkamp ◽  
Gyorgyi Csankovszki

ABSTRACT Dosage compensation equalizes X-linked gene products between the sexes. In Caenorhabditis elegans, the dosage compensation complex (DCC) binds both X chromosomes in XX animals and halves the transcription from each. The DCC is recruited to the X chromosomes by a number of loci, rex sites, and is thought to spread from these sites by an unknown mechanism to cover the rest of the chromosome. Here we describe a novel class of DCC-binding elements that we propose serve as “way stations” for DCC binding and spreading. Both rex sites and way stations comprise strong foci of DCC binding on the native X chromosome. However, rex sites maintain their ability to bind large amounts of DCC even on X duplications detached from the native X, while way stations do not. These results suggest that two distinct classes of DCC-binding elements facilitate recruitment and spreading of the DCC along the X chromosome.


Genetics ◽  
1995 ◽  
Vol 141 (2) ◽  
pp. 527-542
Author(s):  
J Hodgkin ◽  
D G Albertson

Abstract A strain of Caenorhabditis elegans was constructed that permits selection of dominant or sex-linked mutations that transform XO animals (normally male) into fertile females, using a feminizing mutation, tra-2(e2046gf), which by itself does not sexually transform XO males. Twenty-three mutations were isolated after chemical mutagenesis and found to fall into both expected classes (four dominant tra-1 mutations and eight recessive xol-1 mutations) and novel classes. The novel mutations include 10 second-site mutations of tra-2, which are called eg mutations, for enhanced gain-of-function. The tra-2(gf, eg) alleles lead to complete dominant transformation of XO animals from fertile male into fertile female. Also isolated was a duplication of the left end of the X chromosome, eDp26, which has dominant XO lethal and feminizing properties, unlike all previously isolated duplications of the X chromosome. The properties of eDp26 indicate that it carries copies of one or more numerator elements, which act as part of the primary sex-determination signal, the X:A ratio. The eDp26 duplication is attached to the left tip of the X chromosome in inverted orientation and consequently can be used to generate unstable attached-X chromosomes.


Genetics ◽  
1984 ◽  
Vol 106 (1) ◽  
pp. 29-44
Author(s):  
Philip M Meneely ◽  
William B Wood

ABSTRACT Recessive mutant alleles at the autosomal dpy-21 locus of C. elegans cause a dumpy phenotype in XX animals but not in XO animals. This dumpy phenotype is characteristic of X chromosome aneuploids with higher than normal X to autosome ratios and is proposed to result from overexpression of X-linked genes. We have isolated a new dpy-21 allele that also causes partial hermaphroditization of XO males, without causing the dumpy phenotype. All dpy-21 alleles show hermaphroditization effects in XO males that carry a duplication of part of the X chromosome and also partially suppress a transformer (tra-1) mutation that converts XX animals into males. Experiments with a set of X chromosome duplications show that the defects of dpy-21 mutants can result from interaction with several different regions of the X chromosome. We propose that dpy-21 regulates X chromosome expression and may be involved in interpreting X chromosome dose for the developmental decisions of both sex determination and dosage compensation.


Sign in / Sign up

Export Citation Format

Share Document