scholarly journals Genetic localization of foraging (for): a major gene for larval behavior in Drosophila melanogaster.

Genetics ◽  
1989 ◽  
Vol 123 (1) ◽  
pp. 157-163 ◽  
Author(s):  
J S de Belle ◽  
A J Hilliker ◽  
M B Sokolowski

Abstract Localizing genes for quantitative traits by conventional recombination mapping is a formidable challenge because environmental variation, minor genes, and genetic markers have modifying effects on continuously varying phenotypes. We describe "lethal tagging," a method used in conjunction with deficiency mapping for localizing major genes associated with quantitative traits. Rover/sitter is a naturally occurring larval foraging polymorphism in Drosophila melanogaster which has a polygenic pattern of inheritance comprised of a single major gene (foraging) and minor modifier genes. We have successfully localized the lethal tagged foraging (for, 2-10) gene by deficiency mapping to 24A3-C5 on the polytene chromosome map.

Genetics ◽  
1980 ◽  
Vol 95 (2) ◽  
pp. 355-366
Author(s):  
Richard L Roehrdanz ◽  
John C Lucchesi

ABSTRACT The Drosophila melanogaster genome contains a single region (at 83DE on the polytene chromosome map) for which both heterozygous deficiency and heterozygous duplication are inviable. Seven EMS-induced mutations have been recovered that are viable in combination with a duplication of this region. Two classes of mutations are reported: (1) Mutations that allow survival of flies with either a duplication or a normal third chromosome. These mutations retain Ki, a closely linked marker on the mutagenized chromosome. They fail to complement, and one has been mapped to the vicinity of 83DE. (2) Mutations that allow survival only in heterozygous combination with a duplication and have lost the Ki marker. These mutations represent new deletions of the dose-sensitive information. The possible structural organization of the 83DE region is discussed in light of these two classes of mutations.


Genetics ◽  
1989 ◽  
Vol 122 (3) ◽  
pp. 653-661 ◽  
Author(s):  
D Curtis ◽  
S H Clark ◽  
A Chovnick ◽  
W Bender

Abstract The locations of crossover junctions and gene conversion tracts, isolated in the rosy gene of Drosophila melanogaster, were determined using DNA sequencing and denaturing gradient gel electrophoresis. Frequent DNA sequence polymorphisms between the parental genes served as unselected genetic markers. All conversion tracts were continuous, and half of the reciprocal crossover events had conversion tracts at the crossover junction. These experiments have also identified the sequence polymorphisms responsible for altered gene expression in two naturally occurring rosy variants.


Genetics ◽  
1980 ◽  
Vol 94 (1) ◽  
pp. 115-133 ◽  
Author(s):  
Thomas C Kaufman ◽  
Ricki Lewis ◽  
Barbara Wakimoto

ABSTRACT Cytogenetic evidence is presented demonstrating that the 84A-B interval in the proximal portion of the right arm of chromosome 3 is the residence of a homoeotic gene complex similar to the bithorax locus. This complex, originally defined by the Antennapedia (A n t p) mutation, controls segmentation in the anterior portion of the organism. Different lesions within this complex homoeotically transform portions OI the prothorax, proboscis, antenna and eye and present clear analogies to similar lesions within the bithorax locus.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1257-1265 ◽  
Author(s):  
Hsiao-Pei Yang ◽  
Ana Y Tanikawa ◽  
Wayne A Van Voorhies ◽  
Joana C Silva ◽  
Alexey S Kondrashov

Abstract We induced mutations in Drosophila melanogaster males by treating them with 21.2 mm ethyl methanesulfonate (EMS). Nine quantitative traits (developmental time, viability, fecundity, longevity, metabolic rate, motility, body weight, and abdominal and sternopleural bristle numbers) were measured in outbred heterozygous F3 (viability) or F2 (all other traits) offspring from the treated males. The mean values of the first four traits, which are all directly related to the life history, were substantially affected by EMS mutagenesis: the developmental time increased while viability, fecundity, and longevity declined. In contrast, the mean values of the other five traits were not significantly affected. Rates of recessive X-linked lethals and of recessive mutations at several loci affecting eye color imply that our EMS treatment was equivalent to ∼100 generations of spontaneous mutation. If so, our data imply that one generation of spontaneous mutation increases the developmental time by 0.09% at 20° and by 0.04% at 25°, and reduces viability under harsh conditions, fecundity, and longevity by 1.35, 0.21, and 0.08%, respectively. Comparison of flies with none, one, and two grandfathers (or greatgrandfathers, in the case of viability) treated with EMS did not reveal any significant epistasis among the induced mutations.


Euphytica ◽  
1994 ◽  
Vol 77 (3) ◽  
pp. 269-275 ◽  
Author(s):  
M. D. Hayward ◽  
N. J. Mcadam ◽  
J. G. Jones ◽  
C. Evans ◽  
G. M. Evans ◽  
...  

Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 627-636
Author(s):  
C Q Lai ◽  
T F Mackay

Abstract To determine the ability of the P-M hybrid dysgenesis system of Drosophila melanogaster to generate mutations affecting quantitative traits, X chromosome lines were constructed in which replicates of isogenic M and P strain X chromosomes were exposed to a dysgenic cross, a nondysgenic cross, or a control cross, and recovered in common autosomal backgrounds. Mutational heritabilities of abdominal and sternopleural bristle score were in general exceptionally high-of the same magnitude as heritabilities of these traits in natural populations. P strain chromosomes were eight times more mutable than M strain chromosomes, and dysgenic crosses three times more effective than nondysgenic crosses in inducing polygenic variation. However, mutational heritabilities of the bristle traits were appreciable for P strain chromosomes passed through one nondysgenic cross, and for M strain chromosomes backcrossed for seven generations to inbred P strain females, a result consistent with previous observations on mutations affecting quantitative traits arising from nondysgenic crosses. The new variation resulting from one generation of mutagenesis was caused by a few lines with large effects on bristle score, and all mutations reduced bristle number.


Genetics ◽  
1980 ◽  
Vol 95 (1) ◽  
pp. 95-110 ◽  
Author(s):  
Arthur J Hilliker ◽  
Stephen H Clark ◽  
Arthur Chovnick ◽  
William M Gelbart

ABSTRACT This report describes the genetic analysis of a region of the third chromosome of Drosophila melanogaster extending from 87D2-4 to 87E12-F1, an interval of 23 or 24 polytene chromosome bands. This region includes the rosy (ry, 3-52.0) locus, carrying the structural information for xanthine dehydrogenase (XDH). We have, in recent years, focused attention on the genetic regulation of the rosy locus and, therefore, wished to ascertain in detail the immediate genetic environmcnt of this locus. Specifically, we question if rosy is a solitary genetic unit or part of a larger complex genetic unit encompassing adjacent genes. Our data also provide opportunity to examine further the relationship between euchromatic gene distrihution and polytene chromosome structure.—The results of our genetic dissection of the rosy microregion substantiate the conclusion drawn earlier (SCHALET, KERNAGHAN and CHOVNICK 1964) that the rosy locus is the only gene in this region concerned with XDH activity and that all adjacent genetic units are functionally, as well as spatially, distinct Erom the rosy gene. Within the rosy micro-region, we observed a close correspondence between the number of complementation groups (21) and the number of polytene chromosome bands (23 or 24). Consideration of this latter observation in conjunction with those of similar studies of other chhromosomal regions supports the hypothesis that each polytene chromosome band corresponds to a single genetic unit.


Genetics ◽  
1994 ◽  
Vol 138 (2) ◽  
pp. 343-352 ◽  
Author(s):  
A Gimelfarb ◽  
J H Willis

Abstract An experiment was conducted to investigate the offspring-parent regression for three quantitative traits (weight, abdominal bristles and wing length) in Drosophila melanogaster. Linear and polynomial models were fitted for the regressions of a character in offspring on both parents. It is demonstrated that responses by the characters to selection predicted by the nonlinear regressions may differ substantially from those predicted by the linear regressions. This is true even, and especially, if selection is weak. The realized heritability for a character under selection is shown to be determined not only by the offspring-parent regression but also by the distribution of the character and by the form and strength of selection.


Sign in / Sign up

Export Citation Format

Share Document