scholarly journals Theoretical study of near neutrality. I. Heterozygosity and rate of mutant substitution.

Genetics ◽  
1990 ◽  
Vol 126 (1) ◽  
pp. 219-229 ◽  
Author(s):  
T Ohta ◽  
H Tachida

Abstract In order to clarify the nature of "near neutrality" in molecular evolution and polymorphism, extensive simulation studies were performed. Selection coefficients of new mutations are assumed to be small so that both random genetic drift and selection contribute to determining the behavior of mutants. The model also incorporates normally distributed spatial fluctuation of selection coefficients. If the system starts from "average neutrality," it will move to a better adapted state, and most new mutations will become "slightly deleterious." Monte Carlo simulations have indicated that such adaptation is attained, but that the rate of such "progress" is very low for weak selection. In general, the larger the population size, the more effective the selection becomes. Also, as selection becomes weaker, the behavior of the mutants approaches that of completely neutral genes. Thus, the weaker the selection, the smaller is the effect of population size on mutant dynamics. Increase of heterozygosity with population size is very pronounced for subdivided populations. The significance of these results is discussed in relation to various observed facts on molecular evolution and polymorphism, such as generation-time dependency and overdispersion of the molecular clock, or contrasting patterns of DNA and protein polymorphism among some closely related species.

2018 ◽  
Author(s):  
Brian Charlesworth

AbstractThis paper examines the extent to which empirical estimates of inbreeding depression and inter-population heterosis in subdivided populations, as well as the effects of local population size on mean fitness, can be explained in terms of estimates of mutation rates, and the distribution of selection coefficients against deleterious mutations provided by population genomics data. Using results from population genetics models, numerical predictions of the genetic load, inbreeding depression and heterosis were obtained for a broad range of selection coefficients and mutation rates. The models allowed for the possibility of very high mutation rates per nucleotide site, as is sometimes observed for epiallelic mutations. There was fairly good quantitative agreement between the theoretical predictions and empirical estimates of heterosis and the effects of population size on genetic load, on the assumption that the deleterious mutation rate per individual per generation is approximately one, but there was less good agreement for inbreeding depression. Weak selection, of the order of magnitude suggested by population genomic analyses, is required to explain the observed patterns. Possible caveats concerning the applicability of the models are discussed.


2005 ◽  
Vol 272 (1578) ◽  
pp. 2277-2282 ◽  
Author(s):  
Megan Woolfit ◽  
Lindell Bromham

2020 ◽  
Author(s):  
Kimberly J. Gilbert ◽  
Stefan Zdraljevic ◽  
Daniel E. Cook ◽  
Asher D. Cutter ◽  
Erik C. Andersen ◽  
...  

ABSTRACTThe distribution of fitness effects for new mutations is one of the most theoretically important but difficult to estimate properties in population genetics. A crucial challenge to inferring the distribution of fitness effects (DFE) from natural genetic variation is the sensitivity of the site frequency spectrum to factors like population size change, population substructure, and non-random mating. Although inference methods aim to control for population size changes, the influence of non-random mating remains incompletely understood, despite being a common feature of many species. We report the distribution of fitness effects estimated from 326 genomes of Caenorhabditis elegans, a nematode roundworm with a high rate of self-fertilization. We evaluate the robustness of DFE inferences using simulated data that mimics the genomic structure and reproductive life history of C. elegans. Our observations demonstrate how the combined influence of self-fertilization, genome structure, and natural selection can conspire to compromise estimates of the DFE from extant polymorphisms. These factors together tend to bias inferences towards weakly deleterious mutations, making it challenging to have full confidence in the inferred DFE of new mutations as deduced from standing genetic variation in species like C. elegans. Improved methods for inferring the distribution of fitness effects are needed to appropriately handle strong linked selection and selfing. These results highlight the importance of understanding the combined effects of processes that can bias our interpretations of evolution in natural populations.


Author(s):  
Nahid Shokri Bousjein ◽  
Simon Tierney ◽  
Michael Gardner ◽  
Michael Schwarz

Adaptive evolutionary theory argues that organisms with larger effective population size (Ne) should have higher rates of adaptive evolution and therefore greater capacity to win evolutionary arm races. However, in some certain cases species with much smaller Ne may be able to survive beside their opponents for an extensive evolutionary time. Neutral theory predicts that accelerated rates of molecular evolution in organisms with exceedingly small Ne is due to the effects of genetic drift and fixation of slightly deleterious mutations. We test this prediction in two obligate social parasite species and their respective host species from the bee tribe Allodapini. The parasites (genus Inquilina) have been locked into a tight coevolutionary arm races with their exclusive hosts (genus Exoneura) for ~15 million years, even though Inquilina exhibit Ne that are an order of magnitude smaller than their host. In this study, we compared rates of molecular evolution between host and parasite using nonsynonymous to synonymous substitution rate ratios (dN/dS) of eleven mitochondrial protein coding genes sequenced from transcriptomes. Tests of selection on mitochondrial genes indicated no significant differences between host and parasite dN/dS, with evidence for purifying selection acting on all mitochondrial genes of host and parasite species. Several potential factors which could weaken the inverse relationship between Ne and rate of molecular evolution are discussed.


2005 ◽  
Vol 86 (1) ◽  
pp. 41-51 ◽  
Author(s):  
SYLVAIN GLÉMIN

The fate of lethal alleles in populations is of interest in evolutionary and conservation biology for several reasons. For instance, lethals may contribute substantially to inbreeding depression. The frequency of lethal alleles depends on population size, but it is not clear how it is affected by population structure. By analysing the case of the infinite island model by numerical approaches and analytical approximations it is shown that, like population size, population structure affects the fate of lethal alleles if dominance levels are low. Inbreeding depression caused by such alleles is also affected by the population structure, whereas the mutation load is only weakly affected. Heterosis also depends on population structure, but it always remains low, of the order of the mutation rate or less. These patterns are compared with those caused by mildly deleterious mutations to give a general picture of the effect of population structure on inbreeding depression, heterosis, and the mutation load.


2019 ◽  
Vol 5 (6) ◽  
pp. eaav8179 ◽  
Author(s):  
Devendra Mani ◽  
Ricardo Pérez de Tudela ◽  
Raffael Schwan ◽  
Nitish Pal ◽  
Saskia Körning ◽  
...  

Chemical reactions at ultralow temperatures are of fundamental importance to primordial molecular evolution as it occurs on icy mantles of dust nanoparticles or on ultracold water clusters in dense interstellar clouds. As we show, studying reactions in a stepwise manner in ultracold helium nanodroplets by mass-selective infrared (IR) spectroscopy provides an avenue to mimic these “stardust conditions” in the laboratory. In our joint experimental/theoretical study, in which we successively add H2O molecules to HCl, we disclose a unique IR fingerprint at 1337 cm−1 that heralds hydronium (H3O+) formation and, thus, acid dissociation generating solvated protons. In stark contrast, no reaction is observed when reversing the sequence by allowing HCl to interact with preformed small embryonic ice-like clusters. Our ab initio simulations demonstrate that not only reaction stoichiometry but also the reaction sequence needs to be explicitly considered to rationalize ultracold chemistry.


2020 ◽  
Vol 38 (1) ◽  
pp. 244-262
Author(s):  
Alexander T Ho ◽  
Laurence D Hurst

Abstract In correctly predicting that selection efficiency is positively correlated with the effective population size (Ne), the nearly neutral theory provides a coherent understanding of between-species variation in numerous genomic parameters, including heritable error (germline mutation) rates. Does the same theory also explain variation in phenotypic error rates and in abundance of error mitigation mechanisms? Translational read-through provides a model to investigate both issues as it is common, mostly nonadaptive, and has good proxy for rate (TAA being the least leaky stop codon) and potential error mitigation via “fail-safe” 3′ additional stop codons (ASCs). Prior theory of translational read-through has suggested that when population sizes are high, weak selection for local mitigation can be effective thus predicting a positive correlation between ASC enrichment and Ne. Contra to prediction, we find that ASC enrichment is not correlated with Ne. ASC enrichment, although highly phylogenetically patchy, is, however, more common both in unicellular species and in genes expressed in unicellular modes in multicellular species. By contrast, Ne does positively correlate with TAA enrichment. These results imply that local phenotypic error rates, not local mitigation rates, are consistent with a drift barrier/nearly neutral model.


1983 ◽  
Vol 219 (1216) ◽  
pp. 253-264 ◽  

Theoretical studies on the effects of linkage on variability of quantitative traits and response to directional selection in finite populations are reviewed. Emphasis is given to predictions that can be based on observable parameters, such as population size, chromosome lengths and the increment in variance from new mutations. Although truncation selection produces negative linkage disequilibrium in infinite populations, simulation results show that the effects of linkage on response are more pronounced in finite populations. Substantial linkage disequilibrium at the DNA sequence level is being found in population surveys. Some of the results and their interpretation are discussed.


2010 ◽  
Vol 90 (3) ◽  
pp. 331-340 ◽  
Author(s):  
M G Melka ◽  
F. Schenkel

Conservation of animal genetic resources entails judicious assessment of genetic diversity as a first step. The objective of this study was to analyze the trend of within-breed genetic diversity and identify major causes of loss of genetic diversity in four swine breeds based on pedigree data. Pedigree files from Duroc (DC), Hampshire (HP), Lacombe (LC) and Landrace (LR) containing 480 191, 114 871, 51 397 and 1 080 144 records, respectively, were analyzed. Pedigree completeness, quality and depth were determined. Several parameters derived from the in-depth pedigree analyses were used to measure trends and current levels of genetic diversity. Pedigree completeness indexes of the four breeds were 90.4, 52.7, 89.6 and 96.1%, respectively. The estimated percentage of genetic diversity lost within each breed over the last three decades was approximately 3, 22, 12 and 2%, respectively. The relative proportion of genetic diversity lost due to random genetic drift in DC, HP, LC and LR was 74.5, 63.6, 72.9 and 60.0%, respectively. The estimated current effective population size for DC, HP, LC and LR was 72, 14, 36 and 125, respectively. Therefore, HP and LC have been found to have lost considerable genetic diversity, demanding priority for conservation. Key words: Genetic drift, effective population size


Sign in / Sign up

Export Citation Format

Share Document