scholarly journals Meiotic mismatch repair quantified on the basis of segregation patterns in Schizosaccharomyces pombe.

Genetics ◽  
1993 ◽  
Vol 133 (4) ◽  
pp. 815-824 ◽  
Author(s):  
P Schär ◽  
P Munz ◽  
J Kohli

Abstract Hybrid DNA with mismatched base pairs is a central intermediate of meiotic recombination. Mismatch repair leads either to restoration or conversion, while failure of repair results in postmeiotic segregation (PMS). The behavior of three G to C transversions in one-factor crosses with the wild-type alleles is studied in Schizosaccharomyces pombe. They lead to C/C and G/G mismatches and are compared with closely linked mutations yielding other mismatches. A method is presented for the detection of PMS in random spores. The procedure yields accurate PMS frequencies as shown by comparison with tetrad data. A scheme is presented for the calculation of the frequency of hybrid DNA formation and the efficiency of mismatch repair. The efficiency of C/C repair in S. pombe is calculated to be about 70%. Other mismatches are repaired with close to 100% efficiency. These results are compared with data published on mutations in Saccharomyces cerevisiae and Ascobolus immersus. This study forms the basis for the detailed analysis of the marker effects caused by G to C transversions in two-factor crosses.

Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 407-416 ◽  
Author(s):  
P Manivasakam ◽  
Susan M Rosenberg ◽  
P J Hastings

Abstract In yeast meiotic recombination, alleles used as genetic markers fall into two classes as regards their fate when incorporated into heteroduplex DNA. Normal alleles are those that form heteroduplexes that are nearly always recognized and corrected by the mismatch repair system operating in meiosis. High PMS (postmeiotic segregation) alleles form heteroduplexes that are inefficiently mismatch repaired. We report that placing any of several high PMS alleles very close to normal alleles causes hyperrecombination between these markers. We propose that this hyperrecombination is caused by the high PMS allele blocking a mismatch repair tract initiated from the normal allele, thus preventing corepair of the two alleles, which would prevent formation of recombinants. The results of three point crosses involving two PMS alleles and a normal allele suggest that high PMS alleles placed between two alleles that are normally corepaired block that corepair.


Genetics ◽  
1988 ◽  
Vol 119 (1) ◽  
pp. 21-34
Author(s):  
C W Moore ◽  
D M Hampsey ◽  
J F Ernst ◽  
F Sherman

Abstract Recombination rates have been examined in two-point crosses of various defined cyc1 mutations that cause the loss or nonfunction of iso-1-cytochrome c in the yeast Saccharomyces cerevisiae. Recombinants arising by three different means were investigated, including X-ray induced mitotic recombination, spontaneous mitotic recombination, and meiotic recombination. Heteroallelic diploid strains were derived by crossing cyc1 mutants containing a series of alterations at or near the same site to cyc1 mutants containing alterations at various distances. Marked disproportionalities between physical distances and recombination frequencies were observed with certain cyc1 mutations, indicating that certain mismatched bases can significantly affect recombination. The marker effects were more pronounced when the two mutational sites of the heteroalleles were within about 20 base pairs, but separated by at least 4 base pairs. Two alleles, cyc1-163 and cyc1-166, which arose by G.C----C.G transversions at nucleotide positions 3 and 194, respectively, gave rise to especially high rates of recombination. Other mutations having different substitutions at the same nucleotide positions were not associated with abnormally high recombination frequencies. We suggest that these marker effects are due to the lack of repair of either G/G or C/C mismatched base pairs, while the other mismatched base pair of the heteroallele undergoes substantial repair. Furthermore, we suggest that diminished recombination frequencies are due to the concomitant repair of both mismatches within the same DNA tract.


1982 ◽  
Vol 39 (2) ◽  
pp. 121-138 ◽  
Author(s):  
G. Leblon ◽  
V. Haedens ◽  
A. Kalogeropoulos ◽  
N. Paquette ◽  
J.-L. Rossignol

SummaryCrosses between various types of mutant giving specific patterns of aberrant segregation were performed in the b2 spore colour locus of Ascobolus immersus. The map of 41 mutations showing various patterns of aberrant segregation was established. The frequency of wild-type recombinants and the map additivity, map expansion and map contraction characteristics were shown to be strongly dependent upon the pattern of aberrant segregation of the mutations used. Mutations giving no postmeiotic segregation and an excess of conversion to wild type over conversion to mutant exhibit map expansion in small intervals and a strong map contraction in large intervals. Mutations giving postmeiotic segregations also exhibit map contraction in large intervals. Mutations giving no postmeiotic segregations and an excess of conversion to mutant over conversion to wild type show map additivity and thus provide a simple way for devising gene maps. The relationship between the mapping properties and the pattern of aberrant segregations is accounted for when considering parameters of gene conversion: frequency and distribution of hybrid DNA, frequency and direction of mismatch correction.


Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 769-779 ◽  
Author(s):  
Monika Wierdl ◽  
Margaret Dominska ◽  
Thomas D Petes

One of the most common microsatellites in eukaryotes consists of tandem arrays [usually 15-50 base pairs (bp) in length] of the dinucleotide GT. We examined the rates of instability for poly GT tracts of 15, 33, 51, 99 and 105 bp in wild-type and mismatch repair-deficient strains of Saccharomyces cerevisiae. Rates of instability increased more than two orders of magnitude as tracts increased in size from 15 to 99 bp in both wild-type and msh2 strains. The types of alterations observed in long and short tracts in wild-type strains were different in two ways. First, tracts ≥51 bp had significantly more large deletions than tracts ≤33 bp. Second, for the 99- and 105-bp tracts, almost all events involving single repeats were additions; for the smaller tracts, both additions and deletions of single repeats were common.


1967 ◽  
Vol 9 (2) ◽  
pp. 159-177 ◽  
Author(s):  
A. Kruszewska ◽  
W. Gajewski

Mutants of the Y locus differed appreciably in their basic conversion frequencies (frequencies of conversion in one-point crosses) to wild type. The differences in the basic conversion frequencies in the opposite direction, i.e. from corresponding wild-type allele to mutant, were in general not pronounced. For some alleles frequencies of conversion in both directions were similar, but for the others they differed markedly. No evident correlation between the position of mutants on the map and their basic conversion frequencies was observed.In two-point crosses in repulsion, the great majority of recombinant octads were of conversion type. In these crosses symmetry or asymmetry of conversion depended mainly on similarity or differences in basic conversion frequencies of mutants crossed. In crosses between mutants from different clusters the recombination frequencies were near to the sums of their basic conversion frequencies. Such ‘mutant specificity’ makes it impossible to establish the linear order of mutants on the basis of recombination frequencies in two-point crosses.The results of two-point crosses in repulsion between mutants within clusters pointed to the influence of one allele on the frequency of conversion of another one. This ‘marker effect’ was also evident in some three-point crosses.The frequencies of simultaneous conversions in two-point crosses in coupling did not show negative correlation with the distances between the mutants involved.It seems that many of the data presented here are most easily explained by recently developed hybrid DNA models.


Genome ◽  
1989 ◽  
Vol 32 (3) ◽  
pp. 414-419 ◽  
Author(s):  
Angelos Kalogeropoulos ◽  
Jean-Luc Rossignol

During meiotic recombination, in the b2 gene of Ascobolus immersus hybrid DNA can be formed either on only one (asymmetrical hybrid DNA) or on both (symmetrical hybrid DNA) interacting chromatids. The two phases can be found in the same meiosis, involving the same two interacting chromatids with the symmetrical phase located on the right with regard to the asymmetrical one. We show that the transition from the asymmetrical to the symmetrical phase occurs in a defined region located within the left part of the gene, which is closer to the initiation region. Once formed, the symmetrical hybrid DNA phase seems always to extend to the rightmost mutation sites. This contrasts with asymmetrical hybrid DNA extension, which when it stays in asymmetrical form, may stop within the gene.Key words: Ascobolus immersus, heteroduplex DNA distribution.


Genetics ◽  
1988 ◽  
Vol 119 (2) ◽  
pp. 329-336
Author(s):  
T Langin ◽  
H Hamza ◽  
V Haedens ◽  
J L Rossignol

Abstract In the gene b2 of Ascobolus immersus, large heterologies increase the frequencies of reciprocal exchanges on their upstream border (corresponding to the high non-Mendelian segregation side). Tests were made to determine whether these reciprocal exchanges, instigated by large heterologies, resulted from the blockage of a Holliday junction bordering a hybrid DNA tract extending from the end of the gene to the heterology. Three types of experiments were performed to answer this question. In all cases, results did not correlate the presence of reciprocal exchanges instigated by large heterologies with the presence of adjacent hybrid DNA tracts. These reciprocal exchanges were rarely associated with postmeiotic segregation at upstream markers, they were not associated with gene conversion of a marker within the interval and their frequency was not decreased by decreasing the frequency of hybrid DNA formation in the gene. These results led to the proposal of the existence of a precursor to reciprocal exchange different from a single branch-migrating Holliday junction. This precursor migrates rightward and its migration is dependent on the DNA sequence homology. The existence of this precursor does not exclude that reciprocal exchanges resulting from the maturation of single Holliday junctions bordering adjacent hybrid DNA tracts could also occur.


Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 555-572 ◽  
Author(s):  
Kenneth J Hillers ◽  
Franklin W Stahl

Abstract In Saccharomyces cerevisiae, some gene loci manifest gradients in the frequency of aberrant segregation in meiosis, with the high end of each gradient corresponding to a hotspot for DNA double-strand breaks (DSBs). The slope of a gradient is reduced when mismatch repair functions fail to act upon heteroduplex DNA—aberrant segregation frequencies at the low end of the gradient are higher in the absence of mismatch repair. Two models for the role of mismatch repair functions in the generation of meiotic “conversion gradients” have been proposed. The heteroduplex rejection model suggests that recognition of mismatches by mismatch repair enzymes limits hybrid DNA flanking the site of a DSB. The restoration-conversion model proposes that mismatch repair does not affect the length of hybrid DNA, but instead increasingly favors restoration of Mendelian segregation over full conversion with increasing distance from the DSB site. In our experiment designed to distinguish between these two models, data for one subset of well repairable mismatches in the HIS4 gene failed to show restoration-type repair but did indicate reduction in the length of hybrid DNA, supporting the heteroduplex rejection model. However, another subset of data manifested restoration-type repair, indicating a relationship between Holliday junction resolution and mismatch repair. We also present evidence for the infrequent formation of symmetric hybrid DNA during meiotic DSB repair.


1988 ◽  
Vol 8 (8) ◽  
pp. 3332-3337 ◽  
Author(s):  
Y Choffat ◽  
B Suter ◽  
R Behra ◽  
E Kubli

In Saccharomyces cerevisiae, pseudouridine formation in the middle position of the tRNA(Tyr) anticodon (psi 35) is dependent on the presence of the intron in the tRNA(Tyr) gene (Johnson and Abelson, Nature 302:681-687, 1983). Drosophila melanogaster tRNA(Tyr) genes contain introns of three size classes: 20 or 21 base pairs (bp) (six genes), 48 bp (one gene), and 113 bp (one gene). As in yeast, removal of the intron led to loss of psi 35 in the anticodon when transcription was assayed in Xenopus laevis oocytes. All Drosophila intron sizes supported psi 35 formation. The same results were obtained with the homologous X. laevis tRNA(Tyr) genes containing introns of 12 or 13 bp or with a deleted intron. The introns of yeast (Nishikura and DeRobertis, J. Mol. Biol. 145:405-420, 1981), D. melanogaster, and X. laevis tRNA(Tyr) wild-type genes, while they all supported psi 35 synthesis, did not share any consensus sequences. As discussed, these results, taken together, suggest that for appropriate function the psi 35 enzyme in the X. laevis oocyte needs the presence of an unqualified intron in the tRNA gene and a tRNA(Tyr)-like structure in the unprocessed tRNA precursor.


2003 ◽  
Vol 23 (3) ◽  
pp. 873-886 ◽  
Author(s):  
Juan Lucas Argueso ◽  
Amanda Wraith Kijas ◽  
Sumeet Sarin ◽  
Julie Heck ◽  
Marc Waase ◽  
...  

ABSTRACT In eukaryotic cells, DNA mismatch repair is initiated by a conserved family of MutS (Msh) and MutL (Mlh) homolog proteins. Mlh1 is unique among Mlh proteins because it is required in mismatch repair and for wild-type levels of crossing over during meiosis. In this study, 60 new alleles of MLH1 were examined for defects in vegetative and meiotic mismatch repair as well as in meiotic crossing over. Four alleles predicted to disrupt the Mlh1p ATPase activity conferred defects in all functions assayed. Three mutations, mlh1-2, -29, and -31, caused defects in mismatch repair during vegetative growth but allowed nearly wild-type levels of meiotic crossing over and spore viability. Surprisingly, these mutants did not accumulate high levels of postmeiotic segregation at the ARG4 recombination hotspot. In biochemical assays, Pms1p failed to copurify with mlh1-2, and two-hybrid studies indicated that this allele did not interact with Pms1p and Mlh3p but maintained wild-type interactions with Exo1p and Sgs1p. mlh1-29 and mlh1-31 did not alter the ability of Mlh1p-Pms1p to form a ternary complex with a mismatch substrate and Msh2p-Msh6p, suggesting that the region mutated in these alleles could be responsible for signaling events that take place after ternary complex formation. These results indicate that mismatches formed during genetic recombination are processed differently than during replication and that, compared to mismatch repair functions, the meiotic crossing-over role of MLH1 appears to be more resistant to mutagenesis, perhaps indicating a structural role for Mlh1p during crossing over.


Sign in / Sign up

Export Citation Format

Share Document