scholarly journals Absence of strong heterosis for life span and other life history traits in Caenorhabditis elegans.

Genetics ◽  
1993 ◽  
Vol 134 (2) ◽  
pp. 465-474 ◽  
Author(s):  
T E Johnson ◽  
E W Hutchinson

Abstract We have examined crosses between wild-type strains of Caenorhabditis elegans for heterosis effects on life span and other life history traits. Hermaphrodites of all wild strains had similar life expectancies but males of two strains had shorter life spans than hermaphrodites while males of two other strains lived longer than hermaphrodites. F1 hermaphrodite progeny showed no heterosis while some heterosis for longer life span was detected in F1 males. F1 hybrids of crosses between two widely studied wild-type strains, N2 (var. Bristol) and Berg BO (var. Bergerac), were examined for rate of development, hermaphrodite fertility, and behavior; there was no heterosis for these life history traits. Both controlled variation of temperature and uncontrolled environmental variation affected the length of life of all genotypes. Significant G x E effects on life span were observed in comparisons of N2 and Berg BO hermaphrodites, or N2 hermaphrodites and males, or N2 and a Ts mutant strain (DH26). Nevertheless, within an experiment, environmental variation was minimal and life spans were quite replicable.

Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 801-817
Author(s):  
David R Shook ◽  
Anne Brooks ◽  
Thomas E Johnson

Abstract We have identified chromosomal regions containing quantitative trait loci (QTLs) specifying life history traits in recombinant-inbred strains of the nematode Caenorhabditis elegans. This approach also allows us to examine epistatic interactions between loci and pleiotropic effects on different traits at specific loci. QTLs for mean life span were identified on chromosomes II (near stP101), IV (stP5) and the X (stP61), and QTLs for fertility were identified on II (maP1), III (stP19) and IV (stP51). The QTLs for mean life span accounted for 90% of the genetic component of variance. The loci for mean fertility accounted for 88% of the genetic component of variance. Additional QTLs for temperature-sensitive fertility [II (stP36) and V (stP6)] and internal hatching [IV (stP5) were also mapped in these crosses. We found evidence for epistatic effects on mean life span between maP1 and bP1 (V), and for epistatic effects on mean fertility between stP36 and stP6, between stP98 (II) and stP192 (V), between maP1 and stP127 (III), between maP1 and stP103 (X), and between stP5 and stP6. Negatively correlated, pleiotropic effects on mean life span and internal hatching were found linked to stP5.


Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


Genetics ◽  
2000 ◽  
Vol 154 (4) ◽  
pp. 1597-1610 ◽  
Author(s):  
David Gems ◽  
Donald L Riddle

Abstract Males of the nematode Caenorhabditis elegans are shorter lived than hermaphrodites when maintained in single-sex groups. We observed that groups of young males form clumps and that solitary males live longer, indicating that male-male interactions reduce life span. By contrast, grouped or isolated hermaphrodites exhibited the same longevity. In one wild isolate of C. elegans, AB2, there was evidence of copulation between males. Nine uncoordinated (unc) mutations were used to block clumping behavior. These mutations had little effect on hermaphrodite life span in most cases, yet many increased male longevity even beyond that of solitary wild-type males. In one case, the neuronal function mutant unc-64(e246), hermaphrodite life span was also increased by up to 60%. The longevity of unc-4(e120), unc-13(e51), and unc-32(e189) males exceeded that of hermaphrodites by 70–120%. This difference appears to reflect a difference in sex-specific life span potential revealed in the absence of male behavior that is detrimental to survival. The greater longevity of males appears not to be affected by daf-2, but is influenced by daf-16. In the absence of male-male interactions, median (but not maximum) male life span was variable. This variability was reduced when dead bacteria were used as food. Maintenance on dead bacteria extended both male and hermaphrodite longevity.


Author(s):  
Gaotian Zhang ◽  
Jake D Mostad ◽  
Erik C Andersen

Abstract Life history traits underlie the fitness of organisms and are under strong natural selection. A new mutation that positively impacts a life history trait will likely increase in frequency and become fixed in a population (e.g. a selective sweep). The identification of the beneficial alleles that underlie selective sweeps provides insights into the mechanisms that occurred during the evolution of a species. In the global population of Caenorhabditis elegans, we previously identified selective sweeps that have drastically reduced chromosomal-scale genetic diversity in the species. Here, we measured the fecundity of 121 wild C. elegans strains, including many recently isolated divergent strains from the Hawaiian islands and found that strains with larger swept genomic regions have significantly higher fecundity than strains without evidence of the recent selective sweeps. We used genome-wide association (GWA) mapping to identify three quantitative trait loci (QTL) underlying the fecundity variation. Additionally, we mapped previous fecundity data from wild C. elegans strains and C. elegans recombinant inbred advanced intercross lines that were grown in various conditions and detected eight QTL using GWA and linkage mappings. These QTL show the genetic complexity of fecundity across this species. Moreover, the haplotype structure in each GWA QTL region revealed correlations with recent selective sweeps in the C. elegans population. North American and European strains had significantly higher fecundity than most strains from Hawaii, a hypothesized origin of the C. elegans species, suggesting that beneficial alleles that caused increased fecundity could underlie the selective sweeps during the worldwide expansion of C. elegans.


2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Morgan Dutilleul ◽  
Jean-Marc Bonzom ◽  
Catherine Lecomte ◽  
Benoit Goussen ◽  
Fabrice Daian ◽  
...  

Genetics ◽  
1999 ◽  
Vol 151 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Larissa L Vassilieva ◽  
Michael Lynch

Abstract Spontaneous mutations were accumulated in 100 replicate lines of Caenorhabditis elegans over a period of ∼50 generations. Periodic assays of these lines and comparison to a frozen control suggest that the deleterious mutation rate for typical life-history characters in this species is at least 0.05 per diploid genome per generation, with the average mutational effect on the order of 14% or less in the homozygous state and the average mutational heritability ∼0.0034. While the average mutation rate per character and the average mutational heritability for this species are somewhat lower than previous estimates for Drosophila, these differences can be reconciled to a large extent when the biological differences between these species are taken into consideration.


Author(s):  
Joshua D. Brycki ◽  
Jeremy R. Chen See ◽  
Gillian R. Letson ◽  
Cade S. Emlet ◽  
Lavinia V. Unverdorben ◽  
...  

Previous research has reported effects of the microbiome on health span and life span of Caenorhabditis elegans , including interactions with evolutionarily conserved pathways in humans. We build on this literature by reporting the gene expression of Escherichia coli OP50 in wild-type (N2) and three long-lived mutants of C. elegans .


Ecology ◽  
2015 ◽  
Vol 96 (8) ◽  
pp. 2225-2235 ◽  
Author(s):  
Thomas Kiørboe ◽  
Sara Ceballos ◽  
Uffe Høgsbro Thygesen

Sign in / Sign up

Export Citation Format

Share Document