scholarly journals Mutations in calphotin, the gene encoding a Drosophila photoreceptor cell-specific calcium-binding protein, reveal roles in cellular morphogenesis and survival.

Genetics ◽  
1994 ◽  
Vol 138 (2) ◽  
pp. 413-421 ◽  
Author(s):  
Y Yang ◽  
D Ballinger

Abstract Calphotin is a Drosophila photoreceptor cell-specific protein expressed very early in eye development, at the time when cell-type decisions are being made. Calphotin is a very hydrophobic and proline-rich protein which lacks obvious transmembrane domains. The cDNA encoding Calphotin was mapped to a region removed by a set of existing chromosomal deletions. Mutations that alter photoreceptor cell structure and development were isolated that fail to complement these deletions. These mutations fall into two classes. Class I mutations alter the structure of the rhabdomere, a photoreceptor cell organelle specialized for phototransduction. Class II mutations have rough eyes, due to misorientation of the rhabdomeres and photoreceptor cell death. Transformation rescue of these phenotypes in transgenic flies bearing calphotin genomic DNA indicates that both classes of mutations are in the calphotin gene. Analysis of these mutations suggest that Calphotin plays important roles in both rhabdomere development and in photoreceptor cell survival.

1989 ◽  
Vol 108 (2) ◽  
pp. 521-531 ◽  
Author(s):  
A Ayme-Southgate ◽  
P Lasko ◽  
C French ◽  
M L Pardue

A Drosophila melanogaster gene encoding a muscle specific protein was isolated by differential screening with RNA from primary cultures of myotubes. The gene encodes a 20-kD protein, muscle protein 20 (mp20), that is not detected in the asynchronous oscillatory flight muscles, but is found in most, if not all, other muscles (the synchronous muscles). The sequence of the protein, deduced from the DNA, contains two regions of 12 amino acids with significant similarity to high-affinity calcium-binding sites of other proteins. This protein is easily extracted from the contractile apparatus and thus does not seem to be a tightly bound structural component. The gene (located in polytene region 49F 9-13) is unique in the D. melanogaster genome and yields two transcripts, 1.0 and 0.9 kb long. The levels of the two transcripts are regulated differently during development, yet the coding regions of the two transcripts are identical.


2020 ◽  
Vol 48 (8) ◽  
pp. 2218-2232
Author(s):  
Jessica S. Sadick ◽  
Lorin A. Crawford ◽  
Harry C. Cramer ◽  
Christian Franck ◽  
Shane A. Liddelow ◽  
...  

1999 ◽  
Vol 147 (6) ◽  
pp. 1275-1286 ◽  
Author(s):  
Conrad L. Leung ◽  
Dongming Sun ◽  
Min Zheng ◽  
David R. Knowles ◽  
Ronald K.H. Liem

We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends–PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH2 terminus. However, unlike dystonin, mACF7 does not contain a coiled–coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest–specific protein, Gas2. In this paper, we demonstrate that the NH2-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.


PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0141888 ◽  
Author(s):  
Chao Chen ◽  
Xiaoli Sun ◽  
Huizi Duanmu ◽  
Dan Zhu ◽  
Yang Yu ◽  
...  

Author(s):  
Stéphane Doly ◽  
Silvina Laura Diaz ◽  
Arnauld Belmer ◽  
Anne Roumier ◽  
Luc Maroteaux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document