scholarly journals Mutations in the Drosophila melanogaster Gene Encoding S-adenosylmethionine Suppress Position-Effect Variegation

Genetics ◽  
1996 ◽  
Vol 143 (2) ◽  
pp. 887-896 ◽  
Author(s):  
Jan Larsson ◽  
Jingpu Zhang ◽  
Åsa Rasmuson-Lestander

Abstract In Drosophila melanogaster, the study of trans-acting modifier mutations of position-effect variegation and Polycomb group (Pc-G) genes have been useful tools to investigate genes involved in chromatin structure. We have cloned a modifier gene, Suppesssm of zeste 5 (Su(z)5), which encodes Sadenosylmethionine synthetase, and we present here molecular results and data concerning its expression in mutants and genetic interactions. The mutant alleles Su(z)5, l(2)R23 and l(2)M6 show suppression of wm4 and also of two white mutants induced by roo element insertions in the regulatory region i.e., wis (in combination with z  1) and wsp1. Two of the Su(z)S alleles, as well as a deletion of the gene, also act as enhancers of PoZycomb by increasing the size of sex combs on midleg. The results suggest that Su(z)5 is connected with regulation of chromatin structure. The enzyme Sadenosylmethionine synthetase is involved in the synthesis of Sadenosylmethionine, a methyl group donor and also, after decarboxylation, a propylamino group donor in the bio-synthesis of polyamines. Our results from HPLC analysis show that in ovaries from heterozygous Su(z)5 mutants the content of spermine is significantly reduced. Results presented here suggest that polyamines are an important molecule class in the regulation of chromatin structure.

Development ◽  
1998 ◽  
Vol 125 (7) ◽  
pp. 1207-1216 ◽  
Author(s):  
D.A. Sinclair ◽  
T.A. Milne ◽  
J.W. Hodgson ◽  
J. Shellard ◽  
C.A. Salinas ◽  
...  

The Additional sex combs (Asx) gene of Drosophila is a member of the Polycomb group of genes, which are required for maintenance of stable repression of homeotic and other loci. Asx is unusual among the Polycomb group because: (1) one Asx allele exhibits both anterior and posterior transformations; (2) Asx mutations enhance anterior transformations of trx mutations; (3) Asx mutations exhibit segmentation phenotypes in addition to homeotic phenotypes; (4) Asx is an Enhancer of position-effect variegation and (5) Asx displays tissue-specific derepression of target genes. Asx was cloned by transposon tagging and encodes a protein of 1668 amino acids containing an unusual cysteine cluster at the carboxy terminus. The protein is ubiquitously expressed during development. We show that Asx is required in the central nervous system to regulate Ultrabithorax. ASX binds to multiple sites on polytene chromosomes, 70% of which overlap those of Polycomb, polyhomeotic and Polycomblike, and 30% of which are unique. The differences in target site recognition may account for some of the differences in Asx phenotypes relative to other members of the Polycomb group.


Genetics ◽  
1996 ◽  
Vol 144 (3) ◽  
pp. 1329B-1329B

Abstract In the paper by J. Larsson, J. Zhang and A. Rasmuson-Lestander (Genetics  143:  887–896; June, 1996) entitled “Mutations in the Drosophila melanogaster gene encoding S-adenosylmethionine synthetase suppress position-effect variegation,” the word “synthetase” was omitted from the title.


Genetics ◽  
1995 ◽  
Vol 140 (1) ◽  
pp. 139-181 ◽  
Author(s):  
C T Wu ◽  
M Howe

Abstract The zeste1 (z1) mutation of Drosophila melanogaster produces a mutant yellow eye color instead of the wild-type red. Genetic and molecular data suggest that z1 achieves this change by altering expression of the wild-type white gene in a manner that exhibits transvection effects. There exist suppressor and enhancer mutations that modify the z1 eye color, and this paper summarizes our studies of those belonging to the Suppressor 2 of zeste complex [Su(z)2-C]. The Su(z)2-C consists of at least three subregions called Psc (Posterior sex combs), Su(z)2 and Su(z)2D (Distal). The products of these subregions are proposed to act at the level of chromatin. Complementation analyses predict that the products are functionally similar and interacting. The alleles of Psc define two overlapping phenotypic classes, the hopeful and hapless. The distinctions between these two classes and the intragenic complementation seen among some of the Psc alleles are consistent with a multidomain structure for the product of Psc. Psc is a member of the homeotic Polycomb group of genes. A general discussion of the Polycomb and trithorax group of genes, position-effect variegation, transvection, chromosome pairing and chromatin structure is presented.


Genetics ◽  
2000 ◽  
Vol 154 (2) ◽  
pp. 657-668 ◽  
Author(s):  
Randy Mottus ◽  
Richard E Sobel ◽  
Thomas A Grigliatti

Abstract For many years it has been noted that there is a correlation between acetylation of histones and an increase in transcriptional activity. One prediction, based on this correlation, is that hypomorphic or null mutations in histone deacetylase genes should lead to increased levels of histone acetylation and result in increased levels of transcription. It was therefore surprising when it was reported, in both yeast and fruit flies, that mutations that reduced or eliminated a histone deacetylase resulted in transcriptional silencing of genes subject to telomeric and heterochromatic position effect variegation (PEV). Here we report the first mutational analysis of a histone deacetylase in a multicellular eukaryote by examining six new mutations in HDAC1 of Drosophila melanogaster. We observed a suite of phenotypes accompanying the mutations consistent with the notion that HDAC1 acts as a global transcriptional regulator. However, in contrast to recent findings, here we report that specific missense mutations in the structural gene of HDAC1 suppress the silencing of genes subject to PEV. We propose that the missense mutations reported here are acting as antimorphic mutations that “poison” the deacetylase complex and propose a model that accounts for the various phenotypes associated with lesions in the deacetylase locus.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 257-275 ◽  
Author(s):  
Sophie Netter ◽  
Marie-Odile Fauvarque ◽  
Ruth Diez del Corral ◽  
Jean-Maurice Dura ◽  
Dario Coen

AbstractWe used the white gene as an enhancer trap and reporter of chromatin structure. We collected white+ transgene insertions presenting a peculiar pigmentation pattern in the eye: white expression is restricted to the dorsal half of the eye, with a clear-cut dorsal/ventral (D/V) border. This D/V pattern is stable and heritable, indicating that phenotypic expression of the white reporter reflects positional information in the developing eye. Localization of these transgenes led us to identify a unique genomic region encompassing 140 kb in 69D1–3 subject to this D/V effect. This region contains at least three closely related homeobox-containing genes that are constituents of the iroquois complex (IRO-C). IRO-C genes are coordinately regulated and implicated in similar developmental processes. Expression of these genes in the eye is regulated by the products of the Polycomb -group (Pc-G) and trithorax-group (trx-G) genes but is not modified by classical modifiers of position-effect variegation. Our results, together with the report of a Pc -G binding site in 69D, suggest that we have identified a novel cluster of target genes for the Pc-G and trx-G products. We thus propose that ventral silencing of the whole IRO-C in the eye occurs at the level of chromatin structure in a manner similar to that of the homeotic gene complexes, perhaps by local compaction of the region into a heterochromatin-like structure involving the Pc-G products.


Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 609-621
Author(s):  
Thomas Westphal ◽  
Gunter Reuter

Abstract Compact chromatin structure, induction of gene silencing in position-effect variegation (PEV), and crossing-over suppression are typical features of heterochromatin. To identify genes affecting crossing-over suppression by heterochromatin we tested PEV suppressor mutations for their effects on crossing over in pericentromeric regions of Drosophila autosomes. From the 46 mutations (28 loci) studied, 16 Su(var) mutations of the nine genes Su(var)2-1, Su(var)2-2, Su(var)2-5, Su(var)2-10, Su(var)2-14, Su(var) 2-15, Su(var)3-3, Su(var)3-7, and Su(var)3-9 significantly increase in heterozygotes or by additive effects in double and triple heterozygotes crossing over in the ri-pp region of chromosome 3. Su(var)2-201 and Su(var) 2-1401 display the strongest recombinogenic effects and were also shown to enhance recombination within the light-rolled heterochromatic region of chromosome 2. The dominant recombinogenic effects of Su(var) mutations are most pronounced in proximal euchromatin and are accompanied with significant reduction of meiotic nondisjunction. Our data suggest that crossing-over suppression by heterochromatin is controlled at chromatin structure as well as illustrate the possible effects of heterochromatin on total crossing-over frequencies in the genome.


Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 211-220
Author(s):  
Donald A R Sinclair ◽  
Nigel J Clegg ◽  
Jennifer Antonchuk ◽  
Thomas A Milne ◽  
Kryn Stankunas ◽  
...  

Abstract Polycomb group (PcG) genes of Drosophila are negative regulators of homeotic gene expression required for maintenance of determination. Sequence similarity between Polycomb and Su(var)205 led to the suggestion that PcG genes and modifiers of position-effect variegation (PEV) might function analogously in the establishment of chromatin structure. If PcG proteins participate directly in the same process that leads to PEV, PcG mutations should suppress PEV. We show that mutations in E(Pc), an unusual member of the PcG, suppress PEV of four variegating rearrangements: In(l)wm4, BSV, T(2;3)SbV, and In(2R)bwVDe2. Using reversion of a P element insertion, deficiency mapping, and recombination mapping as criteria, homeotic effects and suppression of PEV associated with E(Pc) co-map. Asx is an enhancer of PEV, whereas nine other PcG loci do not affect PEV. These results support the conclusion that there are fewer similarities between PcG genes and modifiers of PEV than previously supposed. However, E(Pc) appears to be an important link between the two groups. We discuss why Asx might act as an enhancer of PEV.


Genetics ◽  
1997 ◽  
Vol 145 (4) ◽  
pp. 945-959
Author(s):  
Vett K Lloyd ◽  
Donald A Sinclair ◽  
Thomas A Grigliatti

Position effect variegation (PEV) results from the juxtaposition of a euchromatic gene to heterochromatin. In its new position the gene is inactivated in some cells and not in others. This mosaic expression is consistent with variability in the spread of heterochromatin from cell to cell. As many components of heterochromatin are likely to be produced in limited amounts, the spread of heterochromatin into a normally euchromatic region should be accompanied by a concomitant loss or redistribution of the protein components from other heterochromatic regions. We have shown that this is the case by simultaneously monitoring variegation of a euchromatic and a heterochromatic gene associated with a single chromosome rearrangement. Secondly, if several heterochromatic regions of the genome share limited components of heterochromatin, then some variegating rearrangements should compete for these components. We have examined this hypothesis by testing flies with combinations of two or more different variegating rearrangements. Of the nine combinations of pairs of variegating rearrangements we studied, seven showed nonreciprocal interactions. These results imply that many components of heterochromatin are both shared and present in limited amounts and that they can transfer between chromosomal sites. Consequently, even nonvariegation portions of the genome will be disrupted by re-allocation of heterochromatic proteins associated with PEV. These results have implications for models of PEV.


Genetics ◽  
1992 ◽  
Vol 131 (2) ◽  
pp. 345-352 ◽  
Author(s):  
J C Eissenberg ◽  
G D Morris ◽  
G Reuter ◽  
T Hartnett

Abstract Chromosome rearrangements which place euchromatic genes adjacent to a heterochromatic breakpoint frequently result in gene repression (position-effect variegation). This repression is thought to reflect the spreading of a heterochromatic structure into neighboring euchromatin. Two allelic dominant suppressors of position-effect variegation were found to contain mutations within the gene encoding the heterochromatin-specific chromosomal protein HP-1. The site of mutation for each allele is given: one converts Lys169 into a nonsense (ochre) codon, while the other is a frameshift after Ser10. In flies heterozygous for one of the mutant alleles (Su(var)2-504), a truncated HP-1 protein was detectable by Western blot analysis. An HP-1 minigene, consisting of HP-1 cDNA under the control of an Hsp70 heat-inducible promoter, was transduced into flies by P element-mediated germ line transformation. Heat-shock driven expression of this minigene results in elevated HP-1 protein level and enhancement of position-effect variegation. Levels of variegating gene expression thus appear to depend upon the level of expression of a heterochromatin-specific protein. The implications of these observations for mechanism of heterochromatic position effects and heterochromatin function are discussed.


Sign in / Sign up

Export Citation Format

Share Document